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Abstract

We examine a special case of admissible representations of the closed interval, namely those
which arise via sequences of a finite number of Möbius transformations. We regard certain
sets of Möbius transformations as a generalized notion of digits and introduce sufficient con-
ditions that such a “digit set” yields an admissible representation of [0,+∞]. Furthermore we
establish the productivity and correctness of the homographic algorithm for such “admissible”
digit sets. In the second part of the paper we discuss representation of positive real num-
bers based on the Stern–Brocot tree. We show how we can modify the usual Stern–Brocot
representation to yield a ternary admissible digit set.
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1 Introduction

We investigate the role of redundancy in real number representations, especially as it pertains
to computability of real-valued functions. In particular, we are concerned with redundancy in
intensional approaches to exact arithmetic in which real numbers are represented by the data-type
of infinite sequences (synonymously, streams). In the functional programming community, it has
long been known that such representations yield “useful” algorithms only if each real number has
more than one representation [28, 3]. In particular, redundancy ensures that the relevant lazy
algorithms on streams are productive [5, 23]. Relatedly, Type Two Effectivity (TTE) provides a
powerful framework to study the computational properties of real number representations, includ-
ing those given by the Cantor or Baire spaces, [26, 27], and plays a key role in our development.

The motivation for our work comes from an ongoing project to formalize the algorithms of
exact real arithmetic and verify their correctness in the Coq [24] theorem prover. In the previous
phases of this project, the algorithms for exact rational arithmetic were verified [19]. While
trying to adapt the formalization for the real numbers, it became clear that one must carefully
analyze the topological properties of the representation and their relation to productivity of the
algorithms. This resulted in a new formulation of digit set, which suffices to show that the resulting
representation is admissible in the sense of TTE (cf. Section 3). This also yielded fairly general
methods of proving the productivity and correctness of the algorithms on streams (cf. Section 4).
Because of its type theoretic nature, this generic method is easy to formalize inside a theorem
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prover. However in the present paper we do not mention the issues specific to the formalization
in a theorem prover.

Computations on continued fractions have led to many of the approaches to exact arithmetic.
The main idea of these approaches were explicit in the early works of Gosper [8] and Raney [22] and
were later further developed, generalized and implemented in various contexts [25, 16, 17, 21, 7,
20, 15, 6, 14, 9]. In short in these approaches, a real number is represented by a stream of suitably
chosen maps. This stream is interpreted as a limit of the composition of the maps applied to a
base interval. The maps are considered as the digits representing the real number. Our approach
is a part of this tradition, motivated by the practical considerations of formal verification.

A basic difference in the approaches in the literature are the conditions restraining the set of
digit maps. Boehm et al. [3] present the notion of interval representation and justify (via recursion
theory) that for a subclass of these representations, algorithms for addition and subtraction are
total. Nielsen and Kornerup [17] present a similar general framework based on axiomatization
of a digit serial number representation, in which the digit maps are contractive on real intervals
and the limit of the compositions are singletons. Examples of digit serial number representation
include ordinary radix (eg. decimal, binary) representation, continued fraction representation and
the more general LFT (Linear fractional transformation) representation. LFT representations
(in which the digit maps are hyperbolic Möbius maps, corresponding via group conjugations
to radix representation) were developed and implemented by Edalat and Potts [21, 20, 6] and
Heckmann [11, 12]. These restrictions give rise to elegant algorithms for transcendental functions.
Konečný [14] restricts the set of maps to d-contractions, which are twice-differentiable functions
with a unique fixpoint and positive derivative. This leads to the notion of IFS-representation,
which includes both radix and LFT representation.

A common feature of each of these approaches is that each real has multiple representations,
i.e., the representations are redundant. This seems a common feature of computationally useful
representations, but the expression “computationally useful” has different intended meanings,
partly due to the applications in which the developers are interested. We prefer the elegant
notion of computability on streams provided by TTE and hence show that our digit sets yield
admissible representations. Moreover, we explicitly show that the usual homographic algorithms
are productive for these representations.

The present paper has two distinct parts: (1) a general presentation of (admissible) digit sets
together with a confirmation that the homographic algorithms are productive (Sections 2 – 4) and
(2) a modified Stern-Brocot encoding, with proof that it is an admissible digit set (Sections 5 – 6).
In Section 2 we introduce the basics of the intensional approach to representing real numbers
for exact real arithmetic. In Section 3 we focus on admissible representations in the context of
Möbius maps. We introduce the notion of admissible digit set and prove that our criteria for an
admissible digit set indeed leads to an admissible representation. Theorem 3.9 is the main result
of this section and is based on a result by Brattka and Hertling [4]. In Section 4 we show that the
so-called refining Möbius maps are induced by productive functions on streams over admissible
digit sets. Productivity for functions on infinite objects is the dual notion to termination for
recursive functions and is the type theoretic counterpart of continuity.

In Section 5 we present the binary Stern–Brocot representation, and in Section 6 we modify
this by adding an additional digit to yield an admissible representation.

2 Real Numbers and Möbius Transformations

In this section we present some definitions from the theory of Möbius transformations which we
will use in the rest of the paper. A Möbius map is a map

x 7−→
ax+ b

cx+ d
,

where a, b, c, d ∈ R. Nonsingular Möbius maps are those for which we have ad − bc 6= 0, i.e.,
those which are strictly monotone and hence injective. Every 2 × 2 matrix A =

[
a b
c d

]
denotes a
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Möbius map given by φA(x) =
ax+b
cx+d . In this sense, nonsingular Möbius maps correspond to 2× 2

matrices with a nonzero determinant (where a, b, c, d have no common divisor). In this paper
we will identify a matrix A with its corresponding Möbius map, for example we write A(x) for
x ∈ R. In particular we write A(∞) for lim

x→+∞
A(x). It is clear that for every A either A(∞) = a

c

or A(∞) = ∞. Moreover, if A is nonsingular and [x, y] is a closed real interval, then A([x, y])
denotes the image of [x, y] under A, namely [A(x), A(y)] if A is increasing and [A(y), A(x)] else.

We denote the set of positive reals by R+ and we define R? = R+ ∪ {0,+∞}. In the rest of
the paper we consider the set R? as our base interval. However all the results of the paper apply
to any other compact interval.

A refining Möbius map is a nonsingular Möbius map that maps R? to itself. We denote the
set of all refining Möbius maps by M. The matrices corresponding to refining Möbius maps form
a group with matrix multiplication. This matrix multiplication corresponds to composition of the
corresponding Möbius maps. If we consider R? as the interval [0,+∞], then a map φ is refining
iff φ(R?) ⊆ R?.

We define Φ<ω (resp. Φω) to be the set of all finite sequences (resp. all streams) of elements
taken from Φ ⊆ M. We write φ for elements of Φ, and let σ, τ, . . . range over Φ<ω, while α, β, . . .
range over Φω and write (α)j for the jth position of α. We write sequences φ0φ1 · · ·φk and streams
similarly. Let φ0φ1 · · · be an infinite stream of Möbius maps. We define their infinite composition
to be

∞⋂

i=0

φ0 ◦ . . . ◦ φi(R?).

It is easy to prove by induction that, if each φk is refining, then this is a nested intersection of
closed intervals, and hence non-empty. If the intersection is a singleton {x}, then we say that x is

represented by the infinite composition
∞⋂

i=0

φ0 ◦ . . . ◦ φi(R?).

Definition 2.1 A finite set Φ of Möbius maps is a digit set if each element x of R? is represented
by some infinite composition of elements of Φ, i.e.,,

x =

∞⋂

i=0

φ0 ◦ . . . ◦ φi(R?).

In this sense, if |Φ| = n we have an n-ary representation for positive real numbers (though not
necessarily the standard n-ary representation, of course).

Example 2.2 The set Dec = {φj(x) =
(10−j)x+(9−j)

jx+(j+1) | 0 ≤ j ≤ 9}, is a decimal digit set. To see

this, note that φj = γ−1ψjγ for γ(x) = 1
x+1 , ψj =

x+j
10 ; and thatthe set Dec’ = {ψj | 0 ≤ j ≤ 9}

is the standard decimal representation for the unit interval [0, 1]. Note also that γ is a bijection
between R? and [0, 1]. Now using the fact that the numbers in [0, 1] have a representation in terms
of ψjs, it is easy to check that Dec is indeed a digit set.

In this paper in Section 5 we present a binary representation and in section 6 we present a ternary
representation.

We will quantify the property of being refining [6, 11, 12, 14]. Since we are dealing with
extended set of real numbers, we will consider the image of R? under the one-point compactification
of the entire real line. Consider the Möbius map S0(x) =

x−1
x+1 . S0 is a bijection between R? and

[−1, 1], with inverse S−10 (x) = x+1
−x+1 . We consider the metric ρ(x, y) = |S0(x)−S0(y)| on positive

real numbers. This metric induces a topology on R?, which restricts to the standard topology on
R+.

Because a Möbius map A takes a closed interval [x, y] to either [A(x), A(y)] or [A(y), A(x)], it
is natural to define the diameter of [x, y] after A by

δ(A, [x, y]) = ρ(A(x), A(y)).
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Note that, if one fixes A, the resulting function δ(A,−) is strictly increasing, i.e., if [x, y] $ [x′, y′],
then δ(A, [x, y]) < δ(A, [x′, y′]). Also note that:

δ(A ◦ B, [x, y]) = δ(A, [B(x), B(y)]) (2.2.1)

(up to reordering of the interval, if B is decreasing). Moreover in terms of A =
[
a b
c d

]
it is easy to

verify the following equation [12]:

δ(A, [x, y]) = ρ(x, y).|detA|.
(x+ 1)(y + 1)

(
(a+ c)x+ b+ d

)(
(a+ c)y + b+ d

) . (2.2.2)

Next we define a measure of contractivity of a set of refining Möbius maps. Let Φ be a set of
refining Möbius maps. Let for every natural number k:

B(Φ, k) = max{δ(φ0 ◦ φ1 ◦ . . . ◦ φk−1,R?) | φ0, . . . , φk−1 ∈ Φ<ω}.

With this notation we can state and prove the following theorem:

Theorem 2.3 A finite set Φ of refining increasing Möbius maps is a digit set if both following
conditions hold:

i) lim
j→∞

B(Φ, j) = 0,

ii)
⋃

φi∈Φ
φi(R?) = R?.

Proof. Proof. Let φ0φ1 · · · be a stream over Φ. We know that
∞⋂

i=0

φ0 ◦ . . . ◦ φi(R?) is a

non-empty closed interval. By (i), the length of the interval is 0, and hence the intersection
is a singleton, as desired.

Let x ∈ R? be given. By (ii) there exists a φk such that x ∈ φk(R?). Let x0 = φ−1k (x) and
δ0 = φk. We continue in this way and at each step we find xi ∈ R? and δi ∈ Φ such that

δi(xi) = xi−1. It is easy to see that x ∈
∞⋂

i=0

δ0 ◦ . . . ◦ δi(R?), and hence x is represented by

the stream δ0δ1 · · · . ¤

3 Admissible Representations

Theorem 2.3 gives us a criterion for determining whether a given set of Möbius maps is a digit set.
Having a digit set not only enables us to represent real numbers by sequences of elements of a finite
set, but also gives rise to a class of computable functions with respect to that representation [27].
In this section we introduce the extra restrictions on a digit set in order to make it eligible
for computability of the homographic and quadratic functions using algorithms similar to those
in [25, 20, 18].

First we introduce some notation. Let Φ be a digit set. For α ∈ Φω let α¹n denote the finite
sequence of length n consisting of the first n elements of α. We define the stream metric on Φω by

dS(α, β) ,
1

2n
, where α¹n= β¹n but α¹n+1 6= β¹n+1.

It is easy to check that the topology induced by this metric is the usual topology on Φω, namely,
the initial segment (or prefix ) topology for Φ. The standard basis for Φω consists of sets Uσ defined
by

Uσ := {α ∈ Φω | α¹n= σ}, (3.0.1)

where σ ∈ Φ<ω. Explicitly, given a finite sequence σ, the basic open (in fact, clopen) set Uσ
consists of all those α which have σ as an initial segment.

Next we define the notion of an admissible representation for R?, derived from [26, 27, 4].
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Definition 3.1 A map p : Φω −→ R? is an admissible representation of R? if the following hold.

i) p is continuous;

ii) p is surjective;

iii) p is maximal, i.e. for every (partial) continuous r : Φω −→ R?, there is a continuous f : Φω −→
Φω such that r = p ◦ f .

Intuitively an admissible representation gives rise to functions which are computable with a special
kind of Turing machines[28, 27], namely those with potentially infinite input and output.

Similar to Theorem 2.3 we will state a criterion for when a digit set constitutes an admissible
representation. N.B. we restrict our attention here to increasing Möbius maps. This restriction
simplifies our presentation hereafter, but is not essential.

Definition 3.2 Let Φ be a finite set of refining increasing Möbius maps. We call Φ an admissible
digit set if both following conditions hold:

a. lim
j→∞

B(Φ, j) = 0;

b.
⋃

φi∈Φ
φi(R+) = R+.

In Section 6 we present a ternary admissible digit set. A standard example is the set of the maps

{Dk =
[
1+b−k 1−b+k
1−b−k 1+b+k

]
| |k| < b},

which constitute a b-ary admissible digit set. This is the digit set that Edalat and Potts use in
their development of exact arithmetic[6]. The above definition is similar to the property of interval
containment of [3], but is weaker (cf. [3, Appendix]). First we prove that an admissible digit set
is indeed a restriction on the notion of digit set:

Theorem 3.3 Any admissible digit set is a digit set.

Proof. Proof. Let Φ be an admissible digit set. By definition, Theorem 2.3 (i) holds. Now
assuming

⋃

φi∈Φ

φi(R+) = R+, (3.3.1)

we should prove that
⋃

φi∈Φ

φi(R?) = R?.

Note that φi(R?) is a closed interval, since φi is strictly increasing and continuous. Also,
we know that (0,+∞) ⊆

⋃

φi∈Φ
φi(R?) ⊆ [0,+∞]; but a union of closed sets is a closed set,

and so the result follows. ¤

Next we demonstrate how an admissible digit set gives rise to an admissible representation. Let
Φ be an admissible digit set. From Definition 3.2 (a) it follows that for every stream φ0φ1 · · · of

elements of Φ, we have
∞⋂

i=0

φ0 ◦ . . . ◦ φi(R?) = {x} for some x ∈ R?. Hence we can define the

function RepΦ : Φ
ω −→ R?, such that given φ0φ1 · · · ∈ Φω we have:

φ0φ1 · · · = {RepΦ(

∞⋂

i=0

φ0 ◦ . . . ◦ φi(R?))}.

RepΦ : Φ
ω −→ R? is surjective, by Theorem 3.3. We state some basic properties of RepΦ in the

following lemma. The proof is straightforward.
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Lemma 3.4

i) RepΦ(φ0φ1 · · · ) = φ0(RepΦ(φ1φ2 · · · ))

ii) Let σ = φ0φ1 · · ·φk and Uσ be the basic open defined by (3.0.1). Then RepΦ(Uσ) = φ0 ◦ φ1 ◦
. . . ◦ φk(R?).

Note that RepΦ is a total representation1. As the following lemma—based on a more general
result from [4]—shows, proving the admissibility for total maps boils down to verifying criteria
which are simpler than maximality, which is immediate from [4, Corollary 13].

Lemma 3.5 A total map p : Φω −→ R? is admissible if it is continuous and has a surjective open
restriction.

In order to apply this theorem, we will have to find a suitable domain for the open restriction
of RepΦ. It should be clear that RepΦ itself is not open. In fact, typically the image RepΦ(Uσ)
of a basic open set Uσ is a closed interval (Lemma 3.4 (ii)). What one wants is to remove the
endpoints from the basic open sets. This motivates the following definition.

Definition 3.6 Let Φ be an admissible digit set. We say that a stream φ0φ1 · · · trails to one
side if there exists k such that RepΦ(φkφk+1 · · · ) ∈ {0,+∞}. Otherwise, we say the stream is
non-trailing. We denote the set of all non-trailing streams by Φω

nt
. Given σ ∈ Φ<ω we define the

non-trailing set specified by σ to be Vσ := Uσ ∩ Φω
nt
.

In other words, a stream φ0φ1 · · · is non-trailing iff, for every k, the stream φkφk+1 · · · is mapped to
R+ (via RepΦ). We will show that every number x ∈ R+ is represented by a non-trailing stream.
This will be essential in our proof that admissible digit sets yield admissible representations: the
function RepΦ is open when restricted to the non-trailing streams.

Lemma 3.7 Let Φ be an admissible digit set. For every x ∈ R+, there is a non-trailing stream
α = φ0φ1 · · · in Φω such that RepΦ(α) = x.

Proof. Proof. Let x be given. We will use the fact that Φω is a complete metric space, with the
metric dS defined previously. First, we define a sequence, α0, α1, . . ., where each αi denotes
the sequence2 φi0φ

i
1 · · · , satisfying the following conditions.

(1) For all i, RepΦ(αi) = x.

(2) For all i and for all k ≤ i+ 1, RepΦ(φ
i
kφ

i
k+1 · · · ) ∈ R+. (The stream αi does not

begin to trail off before position i+ 2.)

(3) For all i and for all j < i, we have dS(α
i, αj) ≤ 1

2j . In other words, for all j < i and

k ≤ j, we have φik = φ
j
k.

We define the sequence α0, α1, . . . recursively as follows. By assumption, x ∈ R+ and
⋃
φi(R+) = R+. Hence, there is a φ00 ∈ Φ and y ∈ R+ such that φ00(y) = x. Now, RepΦ is

surjective, so pick a stream φ01φ
0
2 · · · such that RepΦ(φ

0
1φ
0
2 · · · ) = y. This gives the first

stream α0 = φ00φ
0
1 · · · . It is easy to confirm the above requirements for α0.

Suppose that α0, . . . , αn satisfy (1)–(3). Define αn+1 as follows. First, for i ≤ n, let
φn+1i = φni . Now, we know that RepΦ(φ

n
n+1φ

n
n+2 · · · ) is in R+, and so there is a φn+1n+1 ∈ Φ

and y ∈ R+ such that φn+1n+1(y) = RepΦ(φ
n
n+1φ

n
n+2 · · · ). As before, choose a stream

φn+1n+2φ
n+1
n+3 · · · such that RepΦ(φ

n+1
n+2φ

n+1
n+3 · · · ) = y. Again, confirmation of (1)–(3) for αn+1

is straightforward.

Condition (3) ensures that our sequence α0, α1, . . . is Cauchy and hence converges, namely
to a sequence α = φ0φ1 · · · such that, for all i and all j ≤ i, φj = φij . It is easy to see that

1This is possible because the co-domain R? is compact [27].
2The superscript i in φi

j is notational. It does not indicate repetition or exponentiation.
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RepΦ(α) = x. Proving that α is also non-trailing takes a bit more work, but is not
difficult. ¤

Note that for a finite sequence σ ∈ Φ<ω, the set Vσ has a semantic nature with respect to the
interpretation of the digits in R+. This is in contrast with the syntactically specified set Uσ.
Also the association between the open real intervals and the non-trailing sets specified by finite
sequences is implicit in the Lemma 3.7. The following lemma (cf. Lemma 3.4. ii) makes this
explicit.

Lemma 3.8

i) If α ∈ Φω
nt

and φi ∈ Φ then φiα ∈ Φω
nt
.

ii) Let σ = φ0φ1 · · ·φk ∈ Φ<ω and A = φ0 ◦ φ1 ◦ . . . ◦ φk. Then RepΦ(Vσ) = (A(0), A(+∞)).

Proof.

i) Suppose RepΦ(φiα) = 0. This means (Lemma 3.4. i)

φi(RepΦ(α)) = 0. (3.8.1)

Since α is non-trailing, RepΦ(α) > 0. But note φi is increasing and refining. Hence
φi(RepΦ(α)) > φi(0) ≥ 0. This is in contradiction with (3.8.1). Consequently
RepΦ(φiα) 6= 0. Similarly the assumption RepΦ(φiα) = +∞ leads to contradiction.
This together with the fact that α is non-trailing, entails that φiα should also be
non-trailing.

ii) Since Vσ ⊂ Uσ, by using Lemma 3.4. ii we know that

RepΦ(Vσ) ⊂ φ0 ◦ φ1 ◦ . . . ◦ φk(R?). (3.8.2)

Let x ∈ RepΦ(Vσ). This means

x = RepΦ(σα) = σ(RepΦ(α)) (3.8.3)

for some α ∈ Φω
nt
.

Suppose x = φ0 ◦ φ1 ◦ . . . ◦ φk(0) = σ(0). From this and (3.8.3) we get

σ(0) = σ(RepΦ(α))

Note that σ is a composition of monotone maps and hence it is monotone. Therefore
RepΦ(α) = 0, which is in contradiction with the fact that α ∈ Φω

nt
. Similarly the

assumption that x = φ0 ◦ φ1 ◦ . . . ◦ φk(+∞) leads to contradiction and therefore by
(3.8.2) we have proven that x ∈ φ0 ◦ φ1 ◦ . . . ◦ φk(R+).
To see that φ0 ◦ φ1 ◦ . . . ◦ φk(R+) ⊂ RepΦ(Vσ), let x ∈ φ0 ◦ φ1 ◦ . . . ◦ φk(R+). This
means that there exists y ∈ R+ such that x = φ0 ◦ φ1 ◦ . . . ◦ φk(y). By Lemma 3.7 we
know that there is a non-trailing stream α such that y = RepΦ(α). Thus
x = σRepΦ(α). Since α is non-trailing by part i it follows that σα is non-trailing.
Clearly σα ∈ Uσ, and consequently x = RepΦ(σα) ∈ RepΦ(Vσ).

¤

We are ready to state and prove the main result of this section:

Theorem 3.9 Let Φ be an admissible digit set. Then RepΦ : Φ
ω −→ R? is an admissible repre-

sentation.
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Proof. Proof. We will apply the criteria in Lemma 3.5. By definition, RepΦ is a total map. In
order to prove that RepΦ is continuous at point γ, assume ε > 0 is given. According to
Definition 3.2 (a), there exists an N such that B(Φ, N) < ε. Let γ = φ0φ1 · · ·φN−1γ

′ and
A = φ0 ◦ φ1 ◦ . . . ◦ φN−1. It follows that δ(A,R?) ≤ B(Φ, N) < ε. We will show that, for
all α such that dS(α, γ) <

1
2N

, we have ρ(RepΦ(α),RepΦ(γ)) < ε.

Accordingly, let such α be given, say, α = φ0φ1 · · ·φN−1α
′. Then

ρ(RepΦ(α),RepΦ(γ)) = ρ(A(RepΦ(α
′)), A(RepΦ(γ

′)))

= δ(A, [RepΦ(α
′),RepΦ(γ

′)])

≤ δ(A,R?) < ε.

This completes the proof that RepΦ is continuous.

We claim that the restriction of RepΦ to the set

G := Φω
nt
∪Rep−1Φ (0) ∪Rep−1Φ (+∞).

is an open surjection onto R?. We denote this restriction by f :⊆ Φω −→ R?. Clearly, f is a
surjection (Lemma 3.7).

Finally we show that f is an open map. Let W
open

⊆ G be a basic open set in the subspace

topology. Thus there exists Uσ
open

⊆ Φω such that

W = Uσ ∩G = (Uσ ∩ Φω
nt
) ∪ (Uσ ∩Rep

−1
Φ (0))

︸ ︷︷ ︸

W1

∪ (Uσ ∩Rep
−1
Φ (+∞))

︸ ︷︷ ︸

W2

Note that Uσ ∩ Φω
nt
= Vσ and hence we write W = Vσ ∪W1 ∪W2.

Assume y ∈ f(W ). Then y = RepΦ(β) for some β ∈W . If β ∈ Vσ, then y is in the interior
of an open interval in R?. This is because by Lemma 3.8. ii f(Vσ) is an open interval in
R+. Therefore in this case we can find an open subinterval of f(W ) containing y.

Next suppose β ∈W1. Since β ∈ Uσ we can write β = σβ′ for some β′ ∈ Φω. Since β ∈W1

we deduce y = RepΦ(β) = 0 and consequently

σRepΦ(β
′) = RepΦ(β) = 0.

Since σ — now considered as a Möbius map — is increasing and refining, we should have
RepΦ(β

′) = 0 and therefore σ(0) = 0. As a consequence of this and by Lemma 3.8. ii, we
get f(Vσ) = (0, σ(+∞)). Thus

y ∈ [0, σ(+∞)) ⊂ {0} ∪ f(Vσ) ⊂ f(W ), [0, σ(+∞))
open

⊆ R?.

If β ∈W2 one can similarly show that y ∈ (σ(0),+∞]
open

⊆ f(W ).

Thus F maps basic open sets to open intervals and hence it is open. ¤

The above proof for Theorem 3.9 is based on totality of RepΦ. According to [27, Theorem
4.1.15], no representation of the (non-compactified) real numbers can be total. Thus the above
proof can not be used to show the admissibility of the restriction of RepΦ as a representation of
R+.

4 Algebraic structure on Φω

By results of [26], if Φ is an admissible digit set then any continuous function on R? can be lifted
to a continuous function on Φω. This means that in particular for addition and multiplication
we can write continuous functions on Φω that computes them. This general result, while useful,
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does not suffice for doing actual formal verifications in, say, Coq. For that, one needs an explicit
presentation of the so-called homographic and quadratic algorithms (c.f. [25]). Here, we present
the homographic algorithm here and confirm that it is productive.

In this section we present the homographic algorithm for an admissible representation. We
assume we are given an admissible digit set Φ. By homographic algorithm3 we mean a function
H : M× Φω −→ Φω such that, for all α ∈ Φω and refining Möbius maps A, we have

RepΦ(H(A,α)) = A(RepΦ(α)) (4.0.1)

For φ ∈ Φ and A ∈ M, we introduce the following shorthand:

A v φ := A(R+) ⊆ φ(R+)

We further fix an ordering on the finite set Φ and denote its elements by φ0, φ1, . . . , φl−1. A finite
sequence of digits, then, will be denoted φi0φi1 · · ·φin , and similarly for streams.

We aim to define our function H : M× Φω −→ Φω so that it satisfies the following.

H(A, φiα) :=







φ0 H(φ−10 ◦ A, φiα) if A v φ0

φ1 H(φ−11 ◦ A, φiα) else if A v φ1
...

φl−1 H(φ−1l−1 ◦ A, φiα) else if A v φl−1

H(A ◦ φi, α) otherwise.

(4.0.2)

Each of the first k branches of the homographic algorithm is called an emission step, while the last
branch is called an absorption step. Note that the inverse Möbius maps φ−1j are not necessarily

total functions. Nonetheless, A v φj implies that A(R+) is a subset of the domain of φ−1j , and so

φ−1j ◦ A is well defined and refining in each clause in which it appears. Furthermore, since A and
φj are both refining, so is A ◦ φj .

In order to define H as above, we first define a family of sequences representing partial com-
putations of H. Explicitly, for each A ∈ M and stream α = φi0φi1φi2 . . ., we define a function
hA,α : N −→ M×Φ<ω ×N, where the first projection (denoted MA,α) represents the Möbius map
to be used in the next step of computation, the second projection (denoted emA,α) represents the
digits emitted so far and the third projection (denoted abA,α) notes how much of the input has
been absorbed so far. For readability, we omit the superscripts for M, em and ab below.

hA,α(0) = 〈A, [], 0〉

hA,α(n+ 1) =







〈φ−10 ◦ M(n), em(n)φ0, ab(n)〉 if M(n) v φ0

〈φ−11 ◦ M(n), em(n)φ1, ab(n)〉 else if M(n) v φ1
...

〈φ−1l−1 ◦ M(n), em(n)φl−1, ab(n)〉 else if M(n) v φl−1

〈M(n) ◦ φiab(n)
, em(n), ab(n) + 1〉 otherwise

Again, we call the first k cases emission steps and the last an absorption step. In each case,
we alter the Möbius map for the next step of the computation, either by post-composing with
an appropriate φ−1i (in emission steps) or pre-composing with the next digit of α (in absorption
steps). In emission steps, we append the appropriate φi to the output so far. In the absorption
step, the output is unchanged, but we note that we have absorbed another digit of the input by
incrementing abA,α(n).

3We use the term “homographic”, because the original algorithm given by Gosper [8] for computing addition and
multiplication of two continued fractions was called homographic algorithm. What Gosper considered a homographic
function, we call a refining Möbius map.
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Let Φ≤ω be the union of the set of finite sequences Φ<ω with the streams Φω and let . denote
the initial segment ordering on Φ≤ω (so α . β iff α is an initial segment of β). Clearly, for each
A, α and n, we have

emA,α(n) . emA,α(n+ 1).

Since Φ≤ω is a complete partial order with respect to., we may take the directed join
⊔ω
n=0 emA,α(n).

We wish to define

H(A,α) =
ω⊔

n=0

emA,α(n),

but we must show that the directed join is in Φω (i.e., is an infinite sequence).
The join

⊔
emA,α(n) satisfies the following: length(

⊔
emA,α(n)) > j iff there is an n such that

length(emA,α(n)) > j and, furthermore,

(
ω⊔

n=0

emA,α(n)
)

j
=
(
emA,α(n)

)

j
. (4.0.3)

Hence, to show that the join is an infinite sequence, we must show that, for every j, there is an n
such that length(emA,α(n)) > j.

In order to show that this is, indeed, the case, we introduce a quantity which characterizes the
redundancy of the admissible digit set. The idea is to view the overlapping of the range of the
digits as a measure for redundancy of the representation4.

Definition 4.1 Let Φ be an admissible digit set. We define the redundancy of Φ as

red(Φ) = min{ρ(φi(0), φj(+∞)) | φi, φj ∈ Φ, φi(0) 6= φj(+∞)}. (4.1.1)

The redundancy has the following important property, essential for showing that our proposed
definition for H(A,α) indeed yields streams over Φ. With this lemma in hand, we can show that
absorption steps will only be iterated a finite number of times, followed by an emission.

Lemma 4.2 Let A ∈ M such that δ(A,R?) < red(Φ). Then there exists 0 ≤ i < k such that
A v φi.

Proof. Proof. By (3.2.b), we know that A(R+) ⊆
⋃k−1
i=0 φi(R+). Hence, either there is an i such

that φi(0) ∈ A(R+) or there is an i such that A(R+) ⊆ φi(R+). In the latter case, we have
A v φi.

For the former case, suppose there is an x ∈ A(R+) such that x = φi(0) for some φi ∈ Φ.
By assumption, δ(A,R?) < red(Φ) and so S0 ◦ A(+∞)− S0 ◦ A(0) < red(Φ), where
S0 : R? −→ [−1, 1] is the bijection from Section 2. It follows that

S0 ◦ A(+∞)− S0(x) < red(Φ),

S0(x)− S0 ◦ A(0) < red(Φ),

so S0 ◦ A(R+) $ [S0(x)− red(Φ),S0(x) + red(Φ)]. Since x ∈ R+, there is a φj ∈ Φ with
x ∈ φj(R+). But minimality of red(Φ) in (4.1.1) means that the end points S0 ◦ φj(0) and
S0 ◦ φj(+∞) are at least at a distance red(Φ) from S0(x). In other words,

[S0(x)− red(Φ),S0(x) + red(Φ)] ⊆ [S0 ◦ φj(0),S0 ◦ φj(+∞)],

and so A v φj . ¤

We now complete the argument that our definition of H indeed yields a function M×Φω −→ Φω.

4In fact, as defined, the redundancy may be less than the diameter of the minimal overlapping ranges of the
digits, but the definition as given is simple and suffices.
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Theorem 4.3 Let A ∈ M and α ∈ Φω be given and let β =
⊔

em
A,α(n). Then β ∈ Φω.

Proof. Proof. We prove by induction that, for every j, there exists an n such that
length(emA,α(n)) ≥ j. The base case (j = 0) is trivial, so we suppose that the claim is true
for some j and prove it for j + 1.

Let n be given, then, such that length(emA,α(n)) ≥ j and let B be the matrix of coefficients
for MA,α(n). Let

B =
[
b11 b12
b21 b22

]
,M =

[
1 1

b11+b21 b12+b22

]
.

We consider two cases, with respect to the sign of detM :

detM ≥ 0: In this case M denotes an increasing Möbius map and as a consequence

M(0) ≥M(+∞) =
1

b11 + b21
. (4.3.1)

Since lim
j→∞

B(Φ, j) = 0, there exists N such that

B(Φ, N) <
red(Φ) (b11 + b21)

2

|detB|
. (4.3.2)

Take J = n+N + 1. We claim that length(emA,α(J)) ≥ j + 1. Let α = φi0φi1φi2 . . .

and let
C = φi

abA,α(n)
◦ φi

abA,α(n)+1
◦ . . . ◦ φiJ .

The Möbius map C, then, is constructed by taking the composition of the next N
digits of the input stream α.

We may assume that every step from n to n+N (inclusive) is an absorption step, so
that

hA,α(J − 1) = 〈B ◦ C, emA,α(n), abA,α(n) +N〉.

Now, by our choice of N , we have

δ(C,R+) <
red(Φ) (b11 + b21)

2

|detB|
.

We calculate

δ(B ◦ C,R+) = δ(B,C(R+))
= δ(C,R+).|detB|.M(0).M(+∞) by (2.2.2)

≤ δ(C,R+).
|detB|

(b11 + b21)2
by (4.3.1)

< red(Φ).

Hence we can apply Lemma 4.2 and obtain φi such that B ◦ C v φi. Thus, we see
that the Jth step is an emission step, as desired.

detM < 0: In this case M denotes a decreasing Möbius map and

M(+∞) < M(0) =
1

b12 + b22
.

Therefore taking N such that

B(Φ, N) <
red(Φ) (b12 + b22)

2

|detB|
,

we can continue the reasoning as in the previous case.
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We have thus proved that H is a function of the right type, but it remains to be seen that H
satisfies the equation (4.0.2). This is the next task at hand.

Lemma 4.4 Let H(A,α) =
⊔
hA,α(n). Then H satisfies (4.0.2).

Proof. Proof. Let A and α be given, and let hA,α(1) = 〈B, φ, k〉 (here, φ is either an empty
sequence or a singleton and k either 0 or 1). One can show that, for every n,

hA,α(n+ 1) = 〈MB,β(n), φemB,β(n), k + abB,β(n)〉.

The proof proceeds by induction on n, and is perfectly straightforward, so we omit it here.

Now, suppose that H(A,α) is an emission step for digit φi. According to (4.0.2), we should
show that

(
H(A,α)

)

0
= φi

(
H(A,α)

)

j+1
=
(
H(φ−1i ◦ A,α)

)

j

The former is easy: Since, by assumption, i is the least number such that A v φi, we have

hA,α(1) = 〈φ−1i ◦ A, φi, 0〉.

Apply equation 4.0.3.

For the latter, let j be given. Also, let B = φ−1i ◦ A. By definition of H, there is an n such
that

(
H(A,α)

)

j+1
=
(
emA,α(n+ 1)

)

j+1

=
(
φiem

B,α(n)
)

j+1

=
(
emB,α(n)

)

j

=
(
H(B,α)

)

j
.

The proof for the case that H(A,α) is an absorbing step proceeds similarly. We omit it
here. ¤

We have two tasks remaining, then. First, we wish to show that our function H is productive
(when we fix the Möbius map A). Second, we must show that H actually does what it is supposed
to, namely, that it computes the Möbius map A.

We adapt the definition of productivity found in [23] to our setting, Φω. Productivity is the
condition that finite portions of the output depend only on finite portions of the input, so that
the function does not look arbitrarily deep into the input stream to compute initial segments of
the output.

Definition 4.5 A (total) function f : Φω −→ Φω is productive, if

∀α ∈ Φω ∀j ∈ N ∃k ∈ N ∀β
(
β¹k= α¹k =⇒ f(β)¹j= f(α)¹j

)
. (4.5.1)

Intuitively, f is productive if for any k ∈ N the first k elements of its output are produced in a
finite amount of time. More explicitly, if f is productive, then the first k positions of the output
depend only on a finite initial segment of the input. Clearly, productivity is just the same as
continuity with respect to the metric dS.

Theorem 4.6 Let A be a non-singular Möbius map. The function H(A,−) is productive.

12



Proof. Proof. Let α ∈ Φω and j ∈ N be given, and we must show that there is a k such that,
for all β satisfying β¹k= α¹k, we have H(A, β)¹j= H(A,α)¹j .

Pick n such that length(emA,α(n)) ≥ j and let k = abA,α(n), the number of digits of input
of α absorbed by the nth step of the computation of H(A,α). Let β be given such that
β¹k= α¹k. We claim that, for every m ≤ n,

hA,β(m) = hA,α(m). (4.6.1)

This will suffice to complete the proof, since H(A, β)¹j= emA,β(n)¹j .

We prove (4.6.1) by induction on m, with the case m = 0 trivial. The inductive step for
hA,α(m+1) an emission step is also easy. If hA,α(m+1) is an absorption step, then we use
the fact that abA,α(m) ≤ k to conclude that (α)abA,α(m) = (β)abA,β(m), and so the result
follows. ¤

We now proceed to the proof that H is correct, i.e., that for all A and α, we have

A(RepΦ(α)) = RepΦ(H(A,α)).

The right hand side is the unique element of the intersection of all the φj0 ◦ . . . ◦ φjn(R?), where
φj0 · · ·φjn is an initial segment of the output. The following lemma is essential in proving that
the left hand side is an element of that intersection.

Lemma 4.7 Let A and α = φi0φi1 · · · be given and let n ∈ N. Let hA,α(n) = 〈Bn, φn, kn〉, where
φn = φj0 · · ·φjmn

. Then for all β ∈ Φω,

A(RepΦ(α¹kn β)) ∈ φj0 ◦ . . . ◦ φjmn
(R?).

Proof. Proof. We proceed by induction on n, with the base case trivial. Suppose, then, that
the claim holds for n and that the n+ 1st step emits φjmn+1

. Then, it must be the case
that Bn v φjmn+1

, i.e.,

Bn(R+) ⊆ φjmn+1
(R+).

Hence, for every β ∈ Φω, we have Bn(RepΦ(β)) ∈ φjmn+1
(R?).

It is easy to show by induction that

Bn = φ−1jmn
◦ . . . ◦ φ−1j0 ◦ A ◦ φi0 ◦ . . . ◦ φikn−1

.

Hence

A(RepΦ(α¹kn β)) = A ◦ φi0 ◦ . . . ◦ φikn−1
(RepΦ(β))

= φj0 ◦ . . . ◦ φjmn
◦ Bn(RepΦ(β))

∈ φj0 ◦ . . . ◦ φjmn+1
(R?).

This completes the proof of the inductive step for emissions. Suppose, then, that the
n+ 1st step is instead an absorption step. We must show that, for all β,

A(RepΦ(φi0 · · ·φiknβ)) ∈ φj0 ◦ . . . ◦ φjmn
(R?).

But, by inductive hypothesis, for all γ,

A(RepΦ(φi0 · · ·φiknγ)) ∈ φj0 ◦ . . . ◦ φjmn
(R?).

Apply this to γ = φiknβ. ¤

Theorem 4.8 For every A ∈ M, the function H(A,−) : Φω −→ Φω computes A, in the sense
that

A(RepΦ(α)) = RepΦ(H(A,α)).

13



� � ���
�

�
�

�
�

� �

�
�

	
�

�
	

�
�


 � � 

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

� � � � � � � �

�
� �� �� �� � �

�
�

�
� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

 ! " # $ % & ' " ( ) * + , - '

./10243.5. 3.7698.5.9:. 3 :. 0 8 2 :24;. 0
<. 3 ;.=. ;.76

<.5. ;21:/ /
:
2
;
.=.< .>6;

.=.
;
. 3< . 0;

2
:
2
8
. 0:
. 3:
.5.
8
.76
3
.=.
3
2
0
/ .

? @ A B C D E F G H I J C K L M N O P Q C J R S T H I J E U V W

X Y Z[ \] ] ] ]

Figure I: The Stern–Brocot tree

Proof. Proof. Let α = φi0φi1 · · · and RepΦ(H(A,α)) = φj0φj1 · · · . We must show that, for
every k,

A(RepΦ(α)) ∈ φj0 ◦ . . . ◦ φjk(R?).

Let k be given and pick n such that length(emA,α(n)) = jk + 1, so that
φj0 ◦ . . . ◦ φjk = emA,α(n). Apply Lemma 4.7. ¤

Theorem 4.8 shows that the homographic algorithm can be used to evaluate Möbius maps applied
to a stream of digits. Potts [20] and Edalat and Potts [6] show how one can generalize the
structure of the algorithm for computing on expression trees. An expression tree corresponds to a
real function. The simplest expression tree corresponds to the quadratic algorithm. More complex
expression trees correspond to transcendental real functions [6]. The approach we took in order to
prove the productivity and correctness of homographic algorithm, can be generalized to prove the
productivity and correctness of some simple expression trees corresponding such as the quadratic
algorithm. The situation for more complex expression trees has yet to be investigated.

5 Stern–Brocot Representation

Stern–Brocot tree (Figure I) presents an elegant way of encoding positive rational numbers as
elements of the set SB = {L,R}<ω [10, 1, 2, 18]. That the streams of L’s and R’s yield Cauchy
sequences of real numbers is a well-known part of the Stern–Brocot folklore. Here, we will show
that this representation is a digit set, in the sense of Section 2.

The Stern–Brocot encoding explicitly involves the Möbius maps

φL =
x

x+ 1
,

φR = x+ 1,

which suggests a representation of the real numbers via the set Φ2 = {φL, φR}. In keeping with
our previous development, we will show that Φ2 is a digit set (though not admissible), so that
R? can be represented by streams over Φ2. In keeping with our previous development, then, we
throw away the finite sequences and consider only the set Φω

2 of streams over Φ2.
Clearly both φL and φR are refining and increasing Möbius maps. Moreover note that φL(R?) =

[0, 1] and φR(R?) = [1,+∞], so φL(R?)∪ φR(R?) = R?, as condition (ii) in Theorem 2.3 requires.
We must show, then, that lim

k→∞
B(Φ2, k) = 0. We will sketch the proof of this fact.
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First, one observes the diameter of R? under applications of constant sequences. Explicitly,
one can show that, for all k > 0,

δ(φkL,R?) = δ(φkR,R?) =
2

k + 1
(5.0.1)

Moreover, it is easy to prove by induction the following two facts for all k and compositions
A = φ1 ◦ . . . ◦ φk.

(i) A(0) = 0 iff A = φL ◦ φL ◦ . . . ◦ φL, and otherwise, A(0) ≥ 1
k
.

(ii) A(+∞) = +∞ iff A = φR ◦ φR ◦ . . . ◦ φR, and otherwise, A(+∞) ≤ k.

With these facts in hand, we can give the upper bound for contractivity of the digits of Φ2 at each
step.

Lemma 5.1 For every k > 0, B(Φ2, k) =
2

k+1 .

Proof. Proof. We will prove the lemma by induction on k, with the base case trivial.

Suppose that the claim holds for k and let φ0φ1 · · ·φk be given. Let A = φ1 ◦ . . . ◦ φk and
B = φ0 ◦ A. We must show that δ(B,R?) ≤ 2

k+2 , given that δ(A,R?) ≤ 2
k+1 .

We consider the case where φ0 = L. We may assume that some φi 6= φL, since otherwise
the result holds by (5.0.1). Let ψL = x+1

2x+1 , a decreasing Möbius map.

δ(B,R?) = δ(φL, [A(0), A(+∞)]) by (2.2.1)

= ρ(A(0), A(+∞))
(A(0) + 1)(A(+∞) + 1)

(2A(0) + 1)(2A(+∞) + 1)
by (2.2.2)

= ρ(A(0), A(+∞))ψL(A(0))ψL(A(+∞))

≤ ρ(A(0), A(+∞))
(
ψL(A(0))

)2
(?)

≤ ρ(A(0), A(+∞))

(

ψL

(
1

k

))2

by (i)

= δ(A,R?) ·
k + 1

k + 2

≤
2

k + 1
·
k + 1

k + 2
by (IH)

=
2

k + 2
.

In the calculation above, the inequality (?) comes from the fact that ψL is decreasing and
A increasing.

The case in which φ0 = φR is strictly analogous, using ψR = x+1
x+2 . ¤

The following corollary is immediate.

Corollary 5.2 The set Φ2 = {φL, φR} is a digit set.

Hence, one may represent the interval R? via the digit set Φ2. Naturally the next step would be to
apply the algorithms given in [18] to compute arithmetic operations for this representation. But

this is not possible. For example if we want to add 1−
√
2
2 and

√
2
2 using the quadratic algorithm

of [18], after absorbing any initial segment of the input sequences we are still unable to output
an element of the output because we don’t know whether the result is bigger or smaller than 1.
With the terminology from the Section 3, we can prove the following lemma which implies that
the binary Stern–Brocot representation is not sufficient for computations.
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Lemma 5.3

i) Multiplication by 2 is not continuous on Φω
2 .

ii) RepΦ2
is not an admissible representation.

Proof. Proof.

i) Suppose there is a continuous map Γ: Φω
2 −→ Φω2 that “computes the multiplication by

2”, that is to say:
∀α ∈ Φω2 . RepΦ2

(Γα) = 2 ·RepΦ2
(α). (5.3.1)

Because Γ is continuous at β = φLφLφ
∞
R
, (which interprets to 1

2 ), given N > 0, there
is m ≥ 0 such that

∀α ∈ Φω2 . dS(α, β) <
1

2m
⇒ dS(Γα,Γβ) <

1

2N
(5.3.2)

Now, either Γβ = φRφ
∞
L

or Γβ = φLφ
∞
R
, since these are the only sequences which

interpret to 1. Suppose Γβ = φRφ
∞
L

(the other case is similar). Then choose
α = φ2

L
φm+1
R

φ∞
L
. Clearly dS(α, β) <

1
2m . By an easy induction on m one can obtain

RepΦ2
(α) = m+1

2m+3 . Consequently by (5.3.1) we have Γα ∈ Rep−1Φ2
( 2m+22m+3 ). Therefore

the first digit of α must be φL, and this means dS(Γα,Γβ) = 1 which is in
contradiction with (5.3.2).

ii) Suppose RepΦ2
is admissible. Since f(x) = 2x is a continuous map on R?, then the

map f ◦ RepΦ2
: Φω2 −→ R? is continuous. Hence by the maximality property of the

admissible representation there should exists a continuous map Γ: Φω
2 −→ Φω2 s.t.

RepΦ2
◦ Γ = f ◦ RepΦ2

= 2 ·RepΦ2
. This is in contradiction with part i.

¤

6 Admissible Stern–Brocot Representation

In this section, we extend the digit set Φ2 of the previous section, to get an admissible digit set.
We will use the theory developed in Section 3 and add one digit to the set Φ2 of previous section.

Lemma 5.3 shows that the set SBω does not contain enough redundancy for computability
purposes. Looking back at the Definition 3.2, we see that the source of the difficulty lies in the
fact that φR(R+) ∪ φL(R+) 6= R+. We will “patch” this by adding an extra map. Consider the
map

φM(x) :=
2x+ 1

x+ 2
.

In this section we shall prove that the set Φ3 = {φL, φR, φM} is an admissible digit set. Note
that 1 ∈ φM(R+). Thus the condition (b) of Definition 3.2 holds for Φ3. We must show that
lim
j→∞

B(Φ3, j) = 0.

The proof of this fact is very similar to what we did in Section 5. We already have a bound
for δ(A,R?) for those Möbius maps A made up by compositions of φR and φL. We will show that
bound applies to all compositions of Φ3.

In fact, one can show that, if A = φ1 ◦ . . . ◦ φk is a composition involving φM , then

1

k + 1
≤ A(0) and A(+∞) ≤ k + 1.

We use that fact to show the following.

Lemma 6.1 Let A = φ0 ◦ . . . ◦ φk, where some φi = φM. Then δ(A,R?) ≤ 2
k+2 .
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The proof follows same reasoning as in Lemma 5.1, with an extra case for φ0 = φM, where ψM is
the constant map 1

3 .
Since we already knew that compositions φ0 ◦ . . . ◦ φk not involving φM have diameter bounded

by 2
k+1 , we have the following.

Lemma 6.2 For every k > 0, B(Φ3, k) ≤
2

k+1 .

Hence the following corollary:

Corollary 6.3 Φ3 is an admissible digit set. Consequently, RepΦ3
is an admissible representa-

tion.

We can then apply the results of Section 4. For each refining Möbius map A, there is a productive
function SB

ω
−→ SB

ω
computing A. In this particular case, the condition A v ψ will boil down

to comparing two line segments ax+ b and cx+ d for positive values of x. According to the result
of comparison we may output a digit or ask for more input [18].

7 Conclusion

In this paper we have quantified the property of redundancy for a representation of real numbers
and have applied this redundancy in order to obtain a generic proof of productivity of the exact
arithmetic algorithms. We have shown the proof in detail in the case of homographic algorithm.
The method applied is generalizable to proving the correctness of larger classes of exact arithmetic
functions namely quadratic algorithm. It remains to be seen how far this method is applicable for
the general normalization algorithm of Potts[20] for expression trees.

In the second part of the paper we have presented a representation for positive real numbers
which is a modification of the binary Stern–Brocot representation for rational numbers. There
are some novelties in this new representation. First, this representation is given by three Möbius
maps, two of which are parabolic LFT’s and hence are not considered in the framework of Potts
and Edalat[20, 6]. Moreover this representation show why the convergence criterion given in [12,
Theorem 3.5] is not a necessary condition, since con L = con R = 1 (for the definition of con
see [12]).

It is interesting to study other possible enhancements of the binary stern–Brocot representation.
A good candidate will be to instead of the map φM of Section 6, consider the map

φ′M(x) =

{
1
2−x x ≤ 1,
2x−1
x

1 < x.

Adding this map is inspired by the relation between Stern–Brocot tree and the greatest common
divisor algorithm and corresponds to the “greedy” Euclid’s algorithm [13, Exercise 4.5.3.30]. The
map φ′

M
is a refining and piecewise Möbius map. It can be shown that a ternary representation

using φL, φR and φ′
M

is an example of a non-LFT IFS-representation.
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Jeffery, editors, Theory and Practice of Informatics, 24th Seminar on Current Trends in
Theory and Practice of Informatics, volume 1338 of LNCS, pages 104–121, Berlin, 1997.
Springer-Verlag.

[27] Klaus Weihrauch. Computable Analysis. Springer-Verlag, Berlin Heidelberg, 2000. 285 pp.

[28] E. Wiedmer. Computing with infinite objects. Theoretical Computer Science, 10(2):133–155,
February 1980.

19


