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Abstract. Artifactual functions are related to means-end relations. Whatever else a functional
ascription conveys, it expresses the expectation that artifacts of the appropriate type may be used
to achieve the functional goal. We use our existing work on means-end semantics to make this
relationship precise and present a preliminary formal account of artifactual functions.

We adapt our work on probabilistic transition systems and fuzzy dynamic logic to add a
measure of efficacy to both our means-end semantics and definition of function-fulfillment. Efficacy
allows a rudimentary definition of one kind of malfunction, namely, a token which has much lower
efficacy in achieving its functional goal than normal tokens of that type is malfunctioning.

“A whistle is to make people jump.”

Ruth Krauss, A Hole is to Dig

1. Introduction

Functional ascriptions express expectations about how an artifact may be used. Such ascriptions

include (implicitly or explicitly) a function goal and a function action. The former expresses the

end of the function, the goal that can be attained by using the artifact in the right way. The latter

specifies how to use the artifact to achieve this end1.

The above quotation from Ruth Krauss’s children book, A Hole is to Dig, clearly illustrates the

kind of functional ascription we have in mind here. It ascribes a function to the artifact typeWhistle.

The function goal is to make people jump and the function action (implicit in the quotation) is to

blow the whistle. In fact, we are so taken with how clearly this humorous ascription exemplifies the

form of artifactual function ascriptions that we will use it as a running example throughout.

Functional ascriptions are closely related to means-end relations. Ascriptions express that nor-

mally, if one does the function action to an artifact of appropriate type, then he will realize the

function goal. In other words, the function action is a means to the function end. We have presented

a semantics for means-end relations via Propositional Dynamic Logic (PDL) in [7, 5] and we apply

that work here to develop a formal semantics for artifactual functions (first presented in [4]).

1Not all functional ascriptions have obvious function actions. Ventilation holes in a cat carrier have a function,
but it is not clear that there is any associated action. Our account here does not apply to such passive functions and
we postpone consideration of these kinds of function for later work.
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Artifacts do not always behave as expected. Poorly designed or poorly maintained artifacts may

rarely realize their function goals, even when used as prescribed. We adapt our work on efficacy for

means-end relations from [6] to represent this uncertainty by adding probabilities to the transition

systems of PDL. This gives a preliminary definition of malfunction: a token is malfunctioning if it

has considerably less efficacy to achieve its end than “normal” artifacts of the same narrow type.

2. Means-end relations

An end is a condition which some agent may desire. We take this in the broadest sense, so that

any condition may be an end. Thus, it is reasonable to consider an end to be a formula in a formal

language.

A means is a way to realize an end. Therefore, a means must be something one can do in order to

change the world so that an end ϕ (which may currently be false) will become true. This suggests

that means correspond to transitions between possible worlds. Propositional Dynamic Logic (PDL)

is an appropriate language for modeling transitions between worlds via an agent’s actions2. See [3]

for an introduction to PDL. We will only sketch the semantics here.

2.1. Propositional dynamic logic. The language of PDL is built from two non-empty disjoint

atomic types: the set Φ0 of atomic propositions and the set Π0 of atomic actions. We use P,Q, . . .

to range over Φ0 and m,n, . . . to range over Π0. The sets Φ of formulas and Π of actions are built

via the following definitions, where ϕ, ψ, . . . range over Φ and α, β, . . . range over Π.

Φ = P | > | ϕ ∧ ψ | ¬ϕ | [α]ϕ

Π = m | α;β | α ∪ β

We have omitted the iteration α∗ and test ϕ? actions from our logic, since these are not essential

to our present purposes. The sentence [α]ϕ expresses that, if one does α, then ϕ will be realized.

The construction α;β denotes sequential composition (first do α and then do β) and α ∪ β denotes

non-deterministic choice between α and β.

We introduce the connectives ¬, ∨ and → and the weak operator 〈α〉 as usual.

A PDL model M for Π0 consists of

2It is common to refer to objects as means as well, which is opposed to our means-as-actions semantics. We hope
to discuss how objects can be means in a later paper.
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• a set W of worlds (or states),

• an interpretation v :W×Φ0 → {tt,ff } assigning truth values to pairs of worlds and atomic

propositions and

• a dynamic interpretation of actions. This dynamic interpretation consists of transitions

between worlds, labeled by atomic actions. When an arrow w
m−→ w′ exists, then w′ is a

possible outcome of doing m in world w.

The satisfaction relation |= ⊆ W × Φ is defined as usual for the boolean connectives. We write

w |= [m]ϕ iff for every w′, if w
m−→ w′, then w′ |= ϕ.

Consequently,

w |= 〈m〉ϕ iff there is a w′ such that w
m−→ w′ and w′ |= ϕ.

Thus, w |= [m]ϕ just in case doing m ensures that ϕ will be true in whatever world results and

w |= 〈m〉ϕ just in case it is possible that ϕ will be true in the world that results from doing m in w.

For example, consider a world in which one may toss a coin. If we neglect all of the features but

the coin toss, there are two possible outcomes: the coin may come up heads or it may come up tails.

This is modeled by three worlds and two atomic propositions with the following dynamic structure,

where the actual world is denoted by the filled circle3.

◦
H

•toss ◦
T

toss

The actual world satisfies 〈toss〉H, but not [toss]H.

The action constructions α;β and α ∪ β may be defined by the following axioms.

[α;β]ϕ↔ [α][β]ϕ

[α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

The second axiom looks more natural in terms of the weak operator:

〈α ∪ β〉ϕ↔ 〈α〉ϕ ∨ 〈β〉ϕ.

Since both operations are clearly associative, we will drop parentheses indicating association here-

after.

3This example would be better handled by fuzzy set semantics involving probabilities instead of non-determinism.
See Section 4.1.
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We call an action α prohibited in w if there is no w′ such that w
α−→ w′. Intuitively, such actions

cannot be performed in w. If α is prohibited in w, then w |= [α]ϕ for any ϕ ∈ Φ (including ⊥), but

w 6|= 〈α〉ϕ for any ϕ ∈ Φ (not even >).

2.2. Means and ends in PDL. In [5, 7], we presented a semantics for various means-end relations

in PDL, including weakly and strongly sufficient and necessary means. We omit the discussion of

necessary means here but briefly present the definitions for the two kinds of sufficient means.

Definition 2.1. Let w ∈ W . We say that (in w) an action α is a weakly sufficient means to a

formula ϕ if

w |= 〈α〉ϕ,

i.e. , if there is a w′ such that w
α−→ w′ and w′ |= ϕ.

We say that α is a strongly sufficient means to ϕ if

w |= [α]ϕ ∧ 〈α〉>,

i.e. , if for every w′ such that w
α−→ w′ we have w′ |= ϕ and furthermore α is not prohibited in w.

A weakly sufficient means may bring about one’s end, but is not guaranteed to. A strongly

sufficient means is certain to realize one’s end. Nonetheless, there may be reasons to prefer a

particular weakly sufficient means over a strongly sufficient means (including costs, undesirable side

effects, etc.). If we follow von Wright’s analysis [9], one may say that our agent must either do some

weakly sufficient means to an end he desires or change his desires, on pain of practical irrationality.

We must be careful here to allow for the fact that sometimes, the world changes through no

active effort on the part of our agent. If our agent desires light to read by and it is nearly dawn,

then doing nothing is a means to his end. The action of doing nothing does not necessarily leave

the world as it is. The world has a habit of changing on its own (and also due to the actions of

other agents).

3. Artifactual functions

Means-end relations are intuitively closely related to artifactual functions. When we say that a

whistle is for making people jump, then we are asserting that there is a means involving the whistle



A SEMANTICS FOR FUNCTIONAL EFFICACY 5

(namely, blowing it) that will realize our end (making people jump). Perhaps not all artifactual

functions involve explicit uses (means) like this, but at least many of them do. It is this kind of

artifactual function we examine here.

In the remainder, we stress this particular characteristic of function, to the neglect of many other

characteristics which are equally interesting but not equally easy to formalize or equally relevant to

malfunction. In particular, we do not include any discussion of the origin of functional ascriptions.

While means-end relations express only certain causal relations—certain propensities—functions are

ascribed to an artifact by somebody, therefore the same function may be ascribed to artifacts with

very different dissimilar underlying causal structures. The origins of artifactual functions (whether

by design, repeated use or one-off accidental exploitation) include a social component that is not

amenable to formal methods—but neither is it relevant to malfunction. We take the ascriptions as

given and reason from there.

We presented an account of artifactual functions in [4], with technical details in the appendix.

We summarize that account here, but we simplify it by omitting what we called contexts in ibid.

Contexts give a fuller description of the expectations conveyed in functional ascriptions and also

allow a more sophisticated representation of the causal structures involved: whether blowing a

whistle makes people jump depends not only on the whistle, but also on how hard it is blown, the

nervous qualities of the people that hear it and perhaps the skills of the blower. Nonetheless, we

ignore these considerations for the sake of simplicity.

3.1. Functional ascriptions. In addition to the sets Φ0 of atomic propositions and Π0 of atomic

actions, we add a set T of types and a set O of tokens. We assume that each token has a primary

type and that the types are partially ordered by a subtype relation ≤. The primary type of a token

is the minimal type containing it.

A functional ascription involves four components:

(1) a type T , called the artifact type of the ascription;

(2) an act α, called the function action;

(3) an end ϕ, called the function goal ;

We typically write f = (T, α, ϕ) for a functional ascription.
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The type T gives the artifact type the ascription is about. In our example (“A whistle is to make

people jump.”), the type is Whistle. The action is the way in which the type is to be used. In

our case, this is implicit: to make people jump, one must blow the whistle. The third component

is the end to be achieved: that people in our vicinity jump, a condition denoted Jump. Thus, we

formalize the child’s ascription as:

f = (Whistle, blow, Jump) .

We assume that each atomic action involves some artifact—some token that one uses to do the

action—so that they are appropriate to serve as function actions. Thus, rather that give a dynamic

interpretation for each action m ∈ Π0, we give dynamic interpretation for action-token pairs, (m, o).

Thus, a model consists of the following:

(1) a set W of worlds;

(2) an interpretation JP K ⊆ W of each P ∈ Φ0;

(3) a transition structure J(m, o)K :W → PW for each m ∈ Π0 and o ∈ O.

We assume that the actions involve some artifact, so that they are appropriate to serve as function

actions. Thus, J(m, o)K is the dynamic structure representing “do m with o” and this extends to

structures for (α, o) for any α ∈ Π in the obvious way. Thus, J(α, o)K(w) is the set of worlds which

might result from doing α with o in w. We simplify our notation by omitting the parentheses for

action-token pairs in dynamic operators, writing 〈α, o〉 and [α, o] instead of 〈(α, o)〉 and [(α, o)].

Action-token pairs (α, o) and (α, o′) are intended to differ only in the object (o or o′) used to

do the action α. The remaining context of use should be the same in both cases. The dynamic

structure J(α, o)K expresses the counterfactual causal structures that would be observed if α was

done with the object o. It may be the case that, in the actual world w, o is not at hand so we

may not actually use o to do α, but this fact is not reflected in J(α, o)K(w). Instead, the transition

structure for J(α, o)K(w) expresses what would happen if, contrary to facts, o was available and one

used it to do α.

Of course, for very many action-token pairs, “do m with o” will not make much sense. We

may blow whistles, horns, pinwheels and maybe even noses but if o is a piano or a pumpkin,
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then J(blow, o)K makes little sense. But this is not a problem for our semantics: we simply define

J(blow, o)K(w) = ∅ for cases in which o is a piano or pumpkin.

3.2. Token- and type-fulfillment. A functional ascription f = (T, α, ϕ) asserts that tokens of

type T can be used to realize ϕ, namely by doing α with them. This suggests the following sense of

fulfillment, called token-fulfillment.

Definition 3.1. Let f = (T, α, ϕ) be a functional ascription and o a token of type T . We say that

o (weakly/strongly) fulfills f in w if (α, o) is a (weakly/strongly) sufficient means to ϕ in w.

Definition 3.1 gives the clear relationship between functions and means-end relation. A functional

ascription expresses the expectation that tokens of the right type fit into a particular means-end

relation.

Of course, when one ascribes a function f = (T, α, ϕ), he does not believe that every token of

type T fulfills f . Rather, normal tokens of type T express f . We believe that the natural semantics

of functions involves reasoning about normal tokens of a given type. Thus, we assume that for each

type T , there is a set T normal of normal tokens of type T . This set of normal tokens is not intended

as a set of actual, existing artifacts, but rather fictional tokens that specify the normal behavior of

tokens of that type. In some cases, every existing token of a particular type may be broken, but

normal tokens for the type should not be broken, so normal tokens must be taken as useful fictions..

The elements of T normal allow us to specify normal behavior via their dynamic transition systems:

each o ∈ T normal induces a transition system for (α, o) (for each α ∈ Π) and hence represents an

expected or normal behavior of elements of type T . (Because there may be several radically different

designs for elements of T , we allow that there is a set of normal behaviors.)

How does one come to expectations regarding the behavior of fictional “normal” tokens of a

particular type? We do not know the answer to this, but we nonetheless think that the concept of

normal tokens is a natural tool in interpreting natural language functional ascriptions. We recognize

that adding fictional entities to an account already heavy with counterfactuals is a controversial

move, but we wish to present a semantics closely related to the natural language semantics for
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functions and we believe that this involves beliefs about normal artifacts of a given type. Thus, we

postpone the thorny questions of where such beliefs come from and simply assume them.

The concept of normal tokens gives a new sense of fulfillment, namely type fulfillment.

Definition 3.2. Let f = (T, α, ϕ) be a functional ascription and T ′ ≤ T . We say that T ′ normally

(weakly/strongly) fulfills f in w just in case every normal o ∈ (T ′)normal
(weakly/strongly) fulfills f

in w in the sense of definition 3.1.

What are the commitments of a functional ascription? If an agent ascribes f , then what expec-

tation is he expressing? Certainly, we do not think that he believes every token of type T fulfills

f but he surely must expect the normal tokens to do so. In other words, he believes that T itself

normally fulfills f , at least in the weak sense.

Should he expect that proper subtypes T ′ of T also fulfill f? Evidently not. If so, one could

reasonably infer from f another functional ascription, namely (T ′, α, ϕ), but this is not plausible

in general. Whistles may be for making people jump, but this is not a function of high-pitched

dog whistles which emit a sound that cannot be heard by human ears. (Note: if T ′ ≤ T implies

(T ′)normal ⊆ T normal, then the fact that T fulfills f would imply that T ′ does too. We do not assume

that normal tokens of a subtype T ′ ≤ T are also normal for the type T .)

4. Efficacy and malfunction

Efficacy is the capacity of a means to realize its end. It is one of the primary characteristics we

compare when selecting a suitable means to our end. In artifactual functions, efficacy allows one

to distinguish well-designed types from poorly designed types and properly functioning tokens from

malfunctioning tokens.

4.1. Efficacy. Propositional dynamic logic is designed to distinguish possible and necessary out-

comes of actions, but it is not well-suited for representing efficacy. For efficacy, one must be able to

compare the likelihood of different outcomes—or of the same outcome via different actions. Instead

of non-deterministic transition systems, it is natural to use probabilistic transition systems so that

we include an explicit measure of the probability that a particular world w′ is the outcome of doing

α in w.
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In [6], we presented an initial development in this direction. The fundamental idea is that we can

use probabilities to construct fuzzy propositions, as discussed in [2, 1]. In particular, we interpret

〈α〉ϕ in each world w as the fuzzy proposition, “α reliably realizes ϕ in w.”

Put differently, in Section 2.1, J〈α〉ϕK was interpreted as the set of worlds in which doing α might

realize ϕ. The definition of “might realize” was in terms of the transition structure for α—it was a

graph theoretic property. Now, we amend the transition structure by putting probability weights on

the transitions. This changes our interpretation of 〈α〉ϕ: it allows one to take J〈α〉ϕK to be a fuzzy

set of worlds. Namely, J〈α〉ϕK is the fuzzy set of worlds in which α reliably realizes ϕ. Explicitly,

the degree to which w ∈ J〈α〉ϕK is calculated as

(4.1) J〈α〉ϕK(w) =
∑

w′∈W
JαK(w)(w′) · JϕK(w′),

where JαK(w)(w′) is the probability that doing α in w results in w′ and JϕK(w′) is the degree to which

ϕ is true in w′. We interpret the other connectives in terms of the so-called standard interpretation

of fuzzy sets. See [6].

In this setting, the distinction between weakly and strongly sufficient becomes rather strained

and we drop the latter. Instead, we focus on the truth degree of the proposition that α reliably

realizes ϕ in w. We call this truth degree the efficacy of α as a means to ϕ in w.

4.2. Token/token comparisons. Efficacy provides a measure of the suitability of tokens to a given

task as well. In the previous section, we gave a definition of token-fulfillment that was boolean: either

a token o fulfilled a given function in a given world or it did not. With probabilities, the situation

is subtler. Tokens may fulfill their functions to different degrees.

Definition 4.1. Let f = (T, α, ϕ) be a functional ascription, o a token of type T and w ∈ W . The

efficacy of o with respect to f in w is the value J〈α, o〉ϕK(w). In other words, the efficacy of o with

respect to f in w is the truth degree of the fuzzy proposition “(α, o) is a reliable means to ϕ in w.”

Thus, we can compare the efficacy of distinct tokens of type T with in a given world. If the

efficacy of o with respect to f is greater than that of o′, then o is better suited for the task as

far as reliability is concerned. We call this token/token comparison. Of course, efficacy is not the

only feature one uses in choosing which artifact to use for a given job. In particular, one often
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wants not only to achieve a particular goal but to avoid undesirable side effects (including high cost,

damage to the environment, long time required to realize the goal and so on). Nonetheless, we are

interested here only in comparing tokens with respect to efficacy and omit discussion of these other

characteristics.

Function goals may be fuzzy predicates, conditions which are true to greater or lesser degree

rather than just true or false. For instance, the natural function goal for a room heater is a warm

room, but the proposition that a room is warm is vaguely defined. It is natural to represent this

proposition as a fuzzy proposition. In this case, a heater which has a low probability of making

warm true to very high degree may have higher efficacy than a heater which has high probability

of making warm to a smaller degree.

4.3. Type/type comparisons. We often wish to make type/type comparisons in choosing which

type of artifact is suitable for realizing our ends. To do so, we must have a measure of efficacy for

a type analogous to our definition of type fulfillment (Definition 3.2). If f = (T, α, ϕ) and T ′ ≤ T ,

then how should one calculate the efficacy of T ′ with respect to f in a world w? As before, we turn

to our set of normal tokens for T ′, but we this gives us a set of efficacy values. There are several

options for computing a single value from this set. The most obvious and plausible options are to

take the mean or to take the infimum. We prefer the latter, particular since taking the infimum

amounts to a generalized conjunction in terms of our fuzzy logic operations.

Definition 4.2. Let f = (T, α, ϕ) be a functional ascription, T ′ ≤ T and w ∈ W . The efficacy of

T with respect to f in w is the value

inf
{
J〈α, o〉ϕK(w) | o ∈ T ′normal

}
,

the greatest lower bound of the efficacies of the normal elements of T ′ with respect to f in w.

4.4. Token/type comparisons. The final kind of comparison we wish to make is a token/type

comparison. That is, how does a particular token perform compared to normal tokens of the same

type? If the efficacy of o with respect to f is much greater than the efficacy of T with respect to

f , then o is a particularly reliable token of type T when it comes to doing f . If the efficacy of o is

much less than the efficacy of T , then o is unreliable. A token may be unreliable for any number
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of reasons, including poor design (or not designed for the function f at all), operating outside the

normal conditions for the token, bad maintenance and so on.

Some of these conditions are reasonably called malfunction and others not. In particular, a token

that is unreliable because it is badly maintained is a malfunctioning token but a token that is

unreliable due to bad design is not malfunctioning. It is functioning as it was designed to function

and the result is unfortunate. We may distinguish these two cases by appealing to the token’s

primary type T ′. If we assume that the primary type is narrowly defined, so that all tokens of

common primary type share the same basic design, then we may distinguish tokens behaving as

designed from those that do not. Thus, while it is true that a dog whistle is an unreliable means

to make people jump (indeed, its efficacy should be 0 with respect to this function), it is not less

reliable than other dog whistles.

Since we assume that the contexts of use of (α, o) and (α, o′) are the same, both o and o′ will be

operating in the same conditions. If these conditions are normal for o and o′ has the same primary

type as o, then these conditions should also be normal for o′ (alternatively, the conditions should

be equally extreme for each). Thus the comparison of the two tokens is “fair” in this regard.

Therefore, we regard token/primary type comparisons to yield a reasonable definition of one

important kind of malfunction. If o is much less reliable in fulfilling f than every normal artifact of

type T ′ in the same circumstances, it is reasonable to say that o is malfunctioning.

Definition 4.3. Let f = (T, α, ϕ) be a functional ascription and o an artifact with primary type

T ′ ≤ T . Let w ∈ W and suppose that

J〈α, o〉ϕK(w) � inf
{
J〈α, o〉ϕK(w) | o ∈ T ′normal

}

(where � denotes “is much less than”). Then we say that o is malfunctioning with respect to f in

w.

There are certainly other ways in which a token may malfunction. A television that emits deadly

radiation may produce a perfectly sharp and beautiful picture (fulfilling its function), but it is

nonetheless malfunctioning. However, it is not malfunctioning in the sense of Definition 4.3. But we
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make no claims that our definition covers every kind of malfunction. We are content if it captures

an important and common kind of malfunction, and this is evidently the case.

5. Conclusion

This work is part of our continuing project to make clear the relationship between means-end

relations and artifactual function. We have chosen to do so via formal semantics, since formalization

provides a precision and clarity often lacking from informal analyses. Of course, formal semantics

can also obscure the very difficult parts of the analysis, which, in our case, arises from the use of

counterfactual reasoning, often about how fictional “normal” tokens ought to behave. There is some

work to do in understanding these problematic kinds of reasoning, and this work won’t be completed

by playing with more formal models.

Nonetheless, if our models do presuppose some controversial reasoning, it is because this rea-

soning seems analogous to the natural language meanings we want to clarify. If our understanding

regarding the natural meanings is correct, then we have provided an analogous formal semantics

and with it, the usual advantages found in formalization (including precision, rigor and relatively

clear consequences) as well as the usual disadvantages (including the temptation to oversimplify and

the narrowing of focus to a small list of features of efficacy, function and means-end relations to the

exclusion of other relevant and interesting features). We believe that the advantages of a formal

semantics can outweigh the disadvantages when carefully applied and that the controversial fea-

tures of our particular semantics are an unavoidable consequence of mirroring the natural language

meanings.

Our main contribution in this paper is the application of fuzzy dynamic logic to the theory of

artifactual functions we first presented in [4]. This provides a measure of efficacy for artifacts that

allows token/token, type/type and token/type comparisons. That last allows a simple definition of

a rudimentary but very common form of malfunction.
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