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Abstract

This paper studies long-term norms concerning actions. In Meyer’s Proposi-
tional Deontic Logic (PDeL), only immediate duties can be expressed, however,
often one has duties of longer durations such as: “Never do that”, or “Do this
someday”. In this paper, we will investigate how to amend PDeL so that such
long-term duties can be expressed. This leads to the interesting and suprising con-
sequence that the long-term prohibition and obligation are not interdefinable in our
semantics, while there is a duality between these two notions. As a consequence,
we have provided a new analysis of the long-term obligation by introducing a new
atomic proposition I (indebtedness) to represent the condition that an agent has
some unfulfilled obligation.

1 Introduction

The classical deontic logic introduced by von Wright (1951) is based on a set of “ideal”
or “perfect” worlds, in which all obligations are fulfilled, and introduces formula-binding
deontic operators. Meyer (1988, 1989) instead based deontic logic on dynamic logic by
introducing a special violation atom V , indicating that in the state of concern a violation
of the deontic constraints has been committed. But there is a deeper difference than this
stress of violation over ideal outcomes. Namely, Meyer’s PDeL (Propositional Deontic
Logic) is a dynamic logic.

Following Anderson’s proposal in (1967), Meyer introduced deontic operators to
propositional dynamic logic (PDL) as follows: an action α is forbidden in w if doing α
in w inevitably leads to violation. Similarly, α is obligatory in w if doing anything other
than α inevitably leads to violation. In PDeL, then, duties bind actions rather than
conditions: one is obligated to do something, rather than bring about some condition.

The benefit from this approach of reducing deontic logic to dynamic logic is twofold.
Firstly, in this way we get rid of most of the nasty paradoxes that have plagued tra-
ditional deontic logic (cf. Castañeda (1981)), and secondly, we have the additional
advantage that by taking this approach to deontic logic and employing it for the spec-
ification of integrity constraints for knowledge based systems we can directly integrate
deontic constraints with the dynamic ones.

Nonetheless, PDeL comes with its own limitations, notably in the kinds of ought-to-
do statements that can be expressed. In particular, PDeL’s deontic operators express
norms about immediate rather than eventual actions. Certainly, some prohibitions are
narrow in scope: “Do not do that now.” But other prohibitions restrict action more
broadly: “Don’t ever do that” (i.e., at every point in the future, do not do that). Our
aim here is to investigate how to amend PDeL so that such long-term norms can be
expressed.

1



Interestingly, our semantics for long-term obligation is not as closely related to long-
term prohibition as one might expect. The essential difference comes in evaluating
whether a norm has been violated. A long-term prohibition against α is violated if
there is some time at which the agent has done α. Thus, long-term prohibitions can be
expressed in terms of reaching worlds in violation. Long-term obligations are different:
an obligation to do α is violated just in case the agent never does α. But there is no
world corresponding to this condition. At each world, the agent may later do α and thus
fulfill his obligation. In learning-theoretic terms (Kelly (1996)), violations of prohibitions
are verifiable with certainty but not refutable, and dually fulfillment of obligations are
verifiable with certainty but not refutable.

Thus, while there is a duality between long-term prohibitions and obligations, the
two notions are not inter-definable in our possible world semantics. Instead, we must
provide a new analysis of obligation that is considerably subtler than Meyer’s definition
of immediate obligation. We find that the asymmetry between our long-term normative
concepts is one of the most interesting and surprising consequences of our investigations.

Our presentation begins with a summary of a somewhat simplified version of PDeL,
introducing Meyer’s definitions of (immediate) prohibition and obligation. In Section 3,
we introduce our definition of long-term contiguous prohibition, an admonition to never
perform a particular sequence of actions one after the other. We also introduce long-term
contiguous obligation and explain why inter-definability fails for these two concepts. In
Section 4, we briefly discuss non-contiguous variations for prohibitions and obligations.
These include prohibitions against doing a sequence of actions in order, but with other
actions interspersed (and an analog for obligations).

We close with a few comments about future directions for dynamic deontic logic.
For reasons of space, we have omitted most of the proofs. However, we have given

enough properties of the relations and concepts involved so that the missing derivations
are simple and straightforward. We have included a few proofs where the reasoning is
not obvious and immediate from previous discussion, but our focus here is on semantic
appropriateness rather than technical developments.

2 The basic system PDeL

We present here a somewhat simplified form of PDeL. Our presentation is primarily
based on Meyer (1988, 1989).

2.1 Actions and their interpretations

PDeL is a dynamic logic aimed at reasoning about duties and prohibitions. It differs
from most deontic logics by focusing on actions rather than conditions: things one ought
to do (or not do) rather than conditions one ought to bring about (or avoid). The syntax
is similar to other dynamic logics, with complex actions built from a set A of atomic
actions and complex propositions built from a set of atomic propositions. We use a, b, . . .
to range over A. The semantics, too, are similar to other dynamic logics: models are
given by an labeled transition system on a set W of worlds and actions are interpreted
as sets of paths in this transition system.

PDeL differs from classical PDL (Harel (1984); Meyer (2000)) primarily in the set of
action-constructors. In particular, PDeL includes synchronous composition (doing both
α and β at the same time) and negation (doing something other than α). Synchronous
composition adds a new degree of non-determinism to our semantics, because actions
can be specified to greater or lesser degree. If one does α & β, then he has done α, but
the converse is not true. On this approach, even atomic actions are not fully specified:
a is interpreted as a set of alternatives.
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Therefore, our semantics comes with an extra step: we interpret actions as sets of
sequences of fully specified one-step actions (what Meyer calls “synchronicity sets” or
“s-sets”). Meyer took his set of fully specified one-step actions to be P+P+A, where
P+S is the set PS \{∅} of non-empty subsets of S. He maps atoms a to subsets of P+A
via

a 7→ {S ⊆ A | a ∈ S },
and hence interpretation of actions is a function TA→ P+P+A. This concrete interpre-
tation is well-motivated, but we prefer a simpler, more flexible and abstract approach.
We fix a set X to be our fully specified one-step actions together with a function

i : A→ P+X,

where we recover Meyer’s interpretation by choosing X = P+A and using the mapping
above. Our alternative is more flexible in the following sense: in Meyer (1989), each
pair of atomic actions can be performed simultaneously, i.e. Ja & bK 6= ∅, but this is
not always reasonable. By choosing X and i appropriately, we allow that some pairs of
atomic actions (whistling and chewing crackers, say) cannot be done at the same time.

To summarize: we fix a set A of atomic actions, a set X of fully specified one-step
actions and a function i : A → PX (together with a set of atomic propositions). We
build a set TA of action terms from the elements of A. Each action will be interpreted
as a set of sequences over X , yielding

J−K : TA→ P(X<ω).

The set JαK represents the alternative fully specified ways of doing α. Such X-sequences
will define a set of paths in our X-labeled transition system on W and this yields the
usual interpretation of the dynamic operator [α], but let us not get ahead of ourselves.

The set TA of action terms is defined by

β ::= a | ∅ | ε | any | α ∪ β | α & β | α;β | β

The action a represents the (not fully specified) atomic action a, ∅ the impossible action,
ε the do-nothing action,1 any the do-any atomic action and any∗ the do-any complex
action. As mentioned, α & β represents simultaneous performance of α and β and β
represents doing anything but β. As usual, α∪β represents the non-deterministic choice
between α and β and α;β for the sequential composition of actions α and β.

Before defining the interpretation TA→ P(X<ω), we must introduce a bit of termi-
nology for sequences.

If n ≤ |s|, the sequence s � n is the prefix of s of length n, i.e.

s � n = 〈s0, s1, . . . , sn−1〉.

If n ≥ |s|, then s � n = s.
We write s ∗ t for the concatenation of s and t. We say that s is a prefix of t if there

is some n such that s = t � n, equivalently there is some r such that t = s ∗ r, and
s is a proper prefix if the chosen r is not the empty sequence 〈〉. Two sequences are
comparable if one is a prefix of the other. If S is a set of sequences, we define

cmp(S, s)⇔ ∃t ∈ S . t is comparable to s.

A set S of sequences is n-uniform iff every sequence s in S has length n. If S is
n-uniform for some n, then it is uniform. We will also say that α is (n-)uniform if JαK

1This symbol does not occur in other versions of dynamic logic in the literature. It is, however,
comparable with the ε process in process algebra.
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Definition of JαK

JaK = { 〈x〉 | x ∈ i(a) }
JanyK = { 〈x〉 | x ∈ X }
Jany∗K = X<ω

J∅K = ∅
JεK = {〈 〉}

Jα ∪ βK = JαK ∪ JβK
Jα;βK = { r ∗ s | r ∈ JαK, s ∈ JβK }

Jα1 & α2K = { s | s ∈ JαiK and ∃n . s � n ∈ JαjK, j 6= i }

JαK =

{
{ s ∗ 〈x〉 | cmp(JαK, s) ∧ ¬cmp(JαK, s ∗ 〈x〉) } if JαK 6= ∅
JanyK else

Table 1: The interpretation of actions as sets of X-sequences.

is and that a set S ⊆ TA of actions is uniform if there is some n such that each α ∈ S
is n-uniform.

Our definition of J−K : TA → P(X<ω) is found in Table 1. This definition is a
slight simplification of Meyer (1989). In Meyer’s system, all the sequences are infinite,
but only finite initial segments are relevant (specified) by marking the s-sets. We do
not deal with marked s-sets, since we admit finite sequences and all s-sets in the treated
sequences we consider “relevant”. Furthermore, we do not have the restriction of actions
to be in normal form, i.e., every subexpression of the form α ∪ β has the property that
α & β =A ∅, and dually, every subexpression of the form α & β has the property that
α & β =A ∅. This condition is necessary in Meyer’s system, since otherwise some axioms
would not be sound.2 This is a result of his definition of the “∪”-operator, which is not
the set-theoretic union as in our language. It gives the union of two sets of sequences
but subtracts every sequence s in the union comparable with some sequence t in the
union and is not a proper prefix of t. So, Jα ∪ (α;β)K ⊆ JαK, which is not a property in
our language.

Consequently, we lose a few properties, such as the desirable property β =A β.
However, these properties play no significant role in our development of long-term norms.
Thus, we prefer to simplify PDeL and focus on the original work as far as possible.

See Figures 1 and 2 for a pictorial explanation of & and −.
If every sequence in JαK is also in JβK, then consequences of doing β are also con-

sequences of doing α. Because this fact is so basic to our reasoning, we introduce the
partial order ≤A, defined by

α ≤A β iff JαK ⊆ JβK.

We write α =A β iff JαK = JβK.
We give some of the basic properties regarding ≤A and =A in Table 2. In each case,

the derivation is fairly simple. Moreover, Table 2 contains every property needed to
derive the properties discussed hereafter.

2E.g. axiom [α ∪ β]φ ≡ [α]φ ∧ [β]φ: In Meyer’s system it holds that a =A a ∪ a; b, however,
[a ∪ a; b]φ ≡ [a]φ 6≡ [a]φ ∧ [a; b]φ.
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Figure 2: s ∗ 〈x〉 ∈ JαK if s is comparable
to something in JαK, but s ∗ 〈x〉 is not.

Properties of ≤A
α ∪ β =A α & β α & β ≤A α if {α, β} is uniform

α & β =A α ∪ β if Jα & βK 6= ∅ α & β ≤A α; any∗

α ≤A α;β α & (β ∪ γ) =A (α & β) ∪ (α & γ)

α ≤A any∗ α ∪ (β & γ) ≤A (α ∪ β) & (α ∪ γ)

α ≤A α; any∗ any =A any∗ =A ∅
α ≤A any∗;α α =A α; any =A α; any∗

a ≤A any any∗;α =A ∅ if JαK 6= ∅
α; ∅ =A ∅;α =A ∅ ∅ =A any

ε;β =A β; ε =A β

α ∪ γ ≤A β ∪ δ
α; γ ≤A β; δ



 if α ≤A β and γ ≤A δ

Table 2: Basic properties of ≤A.

2.2 Formulas and their interpretations

In the previous section, we interpreted action terms as sets of sequences over X . The
final step in defining semantics for PDeL is interpreting sequence-world pairs as sets of
paths in our model and using this to interpret formulas. In fact, as with other dynamic
logics, we are not interested in the paths per se, but only with the final worlds in each
path. This simplifies our definitions a bit.

A PDeL model consists of a set W of worlds together with an X-labeled transition
system and an interpretation of atomic propositions. We define an interpretation

J−K : X<ω → (PW)W

taking a sequence 〈x1, . . . , xn〉 and world w to the set of all w′s reachable from w via a
path like so:

w
x1 //w1

x2 // · · · xn //w′.
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Explicitly,

J〈〉K(w) = {w},
Js ∗ 〈x〉K(w) = {w′ | ∃w′′ ∈ JsK(w) and w′′

x→ w′ }.

This induces an interpretation J−K : TA→ (PW)W defined by

JαK(w) = {w′ | ∃s ∈ JαK . w′ ∈ JsK(w) }.

Clearly, we are overloading the notation J−K here, but we hope that our meaning is clear
from context. When we write JαK, we mean a set of X-sequences and when we write
JαK(w), we mean a set of worlds.

Assertions in PDeL are either the atomic proposition, logical compositions ¬φ, φ1 ∨
φ2, φ1 ∧ φ2, φ1 → φ2, φ1 ≡ φ2, or expressions of the form [α]φ with intended meaning
that φ holds after the performance of action α. The semantics of the formula [α]φ is
defined by

w |= [α]φ iff ∀w′ ∈ JαK(w) . w′ |= φ.

Inference rules
φ

[α]φ
(N)

φ→ ψ φ

ψ
(MP)

Axioms

every propositional tautology [β]φ→ [α]φ if α ≤A β
[β](φ1 → φ2)→ ([β]φ1 → [β]φ2) [α ∪ β]φ ≡ [α]φ ∧ [β]φ

[α;β]φ ≡ [α]([β]φ) [α]φ ∨ [β]φ→ [α & β]φ
if {α, β} is uniform

[∅]φ [any]φ→ [a]φ

[ε]φ ≡ φ [any∗]φ→ φ ∧ [any][any∗]φ

Deontic definitions

f(α) ≡ [α]V o(α) ≡ [α]V

PDeL theorems

f(β)→ f(α) if α ≤A β f(α ∪ β) ≡ f(α) ∧ f(β)

f(α & β) ∧ o(α) ≡ f(β) ∧ o(α) o(α) ∨ o(β)→ o(α ∪ β)

o(α ∪ β) ∧ f(α)→ o(β) o(α & β) ≡ o(α) ∧ o(β)
if α, β are both 1-uniform if Jα & βK 6= ∅

f(α;β) ≡ [α]f(β)

f(α) ∨ f(β)→ f(α & β)



 if {α, β} is uniform

Table 3: The theory PDeL.

We summarize the rules and axioms for our simplified PDeL in the top half of
Table 3. This theory is sound but not complete (see Meyer (1988, 1989)).

Thus far, we have defined a variant of PDL, with no particular relevance for reason-
ing about prohibitions or obligations. The reduction of deontic operators to dynamic
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ones uses Anderson’s violation atom V (1967) to represent deontic violations. This
yields deontic operators f and o, representing that an action is prohibited/obligatory,
resp., presented in Table 3 along with some prominent theorems.

Note that these definitions of prohibition and obligation are about immediate actions.
Let us focus on prohibition for a moment. A world w satisfies f(α) just in case in w, the
result of doing α is a world in violation. But if our agent performs some other action
first, say β, then he may no longer be in w and so the fact that w |= f(α) is not relevant
for him. In other words, f(α) expresses that an agent is prohibited from doing α now,
not that he is prohibited from ever doing α.

We close this section with some comments about one unfortunate consequence of
this approach. It seems reasonable that, if α is forbidden, so is any action beginning
with α, i.e. f(α) → f(α;β). But this property does not hold in general. Indeed, it is
easy to see that

` (f(ε)→ f(ε; any∗)) ≡ (V → [any∗]V ).

Thus, if one wants f(α)→ f(α;β) to hold in general, he must either give up the defining
axiom for [α;β] or require V → [any∗]V . This is a very strong and usually undesirable
condition which we briefly discuss in Section 3.1.

It may be argued that, in the end, a dynamic deontic logic indeed wants f(α) →
f(α;β) and ¬(V → [any∗]V ). The natural way to satisfy this is to change the semantics
to interpret JαK(w) as a set of paths and define: w |= [α]V just in case for each path

w
x1 //w1

x2 // · · · xn //wn

in the interpretation of α, there is a world w1 |= V . Such an interpretation violates
not only [α;β]φ ≡ [α][β]φ, but also the axiom K: [β](φ1 → φ2) → ([β]φ1 → [β]φ2). We
postpone this alternative for later research.

3 The long-term contiguous system

We turn our attention now to long-term norms. The definitions of f and o from the
previous section are intended to express immediate duties, but often one has duties of
longer duration, such as: “Never do that”, or, “Do this someday.” In this section, we
introduce the machinery to express such long-term norms.

3.1 The long-term, contiguous prohibition

As previously mentioned, the formula f(α) expresses one important kind of prohibition,
namely, that the agent is prohibited from doing α in this world. But many prohibitions
are stronger than this. They express that one is never allowed to perform a particular
act3, such as “Never point a loaded gun at an innocent man and pull the trigger.” But
we mean a particular interpretation of this “never”. We do not mean “in every world,
one should not point a loaded gun. . . ,” but rather “in every world reachable from the
current world, one should not point a loaded gun. . . ”

Such prohibitions are easy to express in the logic at hand. One is never allowed to
do α just in case, for any action β, doing β followed by α results in violation. In other
words, in world w, one is forever prohibited in doing α iff for all β,

∀w′ ∈ Jβ;αK(w) . w′ |= V.

3In practice, such prohibitions are likely to include a conditional, such as, “Always obey local traffic
laws unless in an emergency.” Admittedly, these conditional prohibitions are not expressible as F (α)
in the sense given here, because we have omitted the test action constructor φ?. But we did so only for
simplicity’s sake. The test constructor presents no particular difficulty for our logic.
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But this is true just in case for every w′ ∈ Jany∗;αK(w), we have w′ |= V , i.e. just in
case w |= f(any∗;α). Thus, we define F (α) ≡ f(any∗;α).

We summarize our definition of F and give a derived rule of inference and several
theorems in Table 4. The derivations are straightforward.

Defining axiom Rule of inference

F (α) ≡ f(any∗;α)
f(α)→ f(β)

F (α)→ F (β)

PDeL theorems for F

F (β)→ F (α) if α ≤A any∗;β F (α)→ f(α)

F (β)→ F (α) if α ≤A β F (α;β) ≡ [any∗;α]f(β)

F (α; any∗;β) ≡ [any∗;α]F (β)

F (α)→ F (β;α) F (α) ∧ F (β) ≡ F (α ∪ β)

F (α) ≡ F (any∗;α) F (α) ∨ F (β)→ F (α & β)
if {α, β} is uniform

Table 4: The definition of F and several consequences.

3.2 The long-term, contiguous obligation

As we have seen, long-term prohibition is easy to express in PDeL and in fact requires
only one small change to Meyer’s 1989 presentation: the addition of the action any∗.
But the situation for long-term obligation is considerably more subtle.

Suppose one has promised to repay a loan, without any deadline regarding repay-
ment. When can we conclude that he has failed to fulfill his duty? What behavior
satisfies his obligation? One fulfills his obligation provided there is some point at which
he actually repays the loan. Until then, he has an outstanding obligation.

One is naturally tempted to define O in terms of F , just as o was defined in terms of
f . Unfortunately this yields unreasonable results: suppose O(a) ≡ F (a). The latter is
equivalent [any∗]f(a) and hence to [any∗]o(a). But [any∗]o(a) → [any∗; a]o(a) and so
this obligation can never be discharged! After doing a, the agent must do it again and
again and . . . . Clearly something is wrong here.

So what properties should O capture? When we assert that α is a long-term obliga-
tion, we mean that we cannot discharge our obligation without first doing α. This does
not mean that we must do α now. It also does not mean that if we do α, our obligation
will be discharged: if we are indebted Paul, we have to acquire the necessary funds to
repay him. But acquiring the funds is not enough to discharge our debt, of course: we
must also repay Paul! Long term obligations are about necessary actions, rather than
sufficient actions.

Thus, O(α) should be interpreted as: our obligations will not be discharged unless
we do some act in Jany∗;α; any∗K. That is, whatever fully specified s we perform,
if s 6∈ Jany∗;α; any∗K, then the outcome will be a world in which we still have an
unfulfilled duty. Consequently, we introduce a new action, α̂ and interpret it as:

Jα̂K = X<ω \ Jany∗;α; any∗K.

We also introduce a defining axiom scheme for α̂ in Table 5 along with a few useful
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properties. We provide proofs for the axiom scheme and the property α̂ ≤A α̂ & β,
since these proofs are not as obvious as the others.

Defining axiom

([α̂]ϕ ∧ [β]¬ϕ) → ([any∗;α; any∗]ψ → [β]ψ)

Properties for α̂

If α ≤A β then β̂ ≤A α̂ α̂ ≤A α̂ & β β̂ ≤A α̂ & β

α̂ ∪ β ≤A α̂ & β̂ α̂ ≤A α̂;β β̂ ≤A α̂;β

α̂ =A ̂any∗;α α̂ =A α̂; any∗

Table 5: Properties of the bα constructor.

Proof of defining axiom. We aim to show that, for every world w, pair of actions α, β
and pair of formulas φ, ψ,

w |= ([α̂]ϕ ∧ [β]¬ϕ) → ([any∗;α; any∗]ψ → [β]ψ).

Suppose that w |= [α̂]ϕ ∧ [β]¬ϕ. First, we will establish that, for every s ∈ Jα̂K ∩ JβK,
JsK(w) = ∅. Let such s be given. Because w |= [α̂]φ, we see that JsK(w) ⊆ JϕK. But
since w |= [β]¬φ, we also see that JsK(w) ⊆ J¬ϕK. Hence JsK(w) is empty.

Now suppose that w |= [any∗;α; any∗]ψ and we will complete the proof by showing
w |= [β]ψ. Let s ∈ JβK be given and we must show JsK(w) ⊆ JψK. If s ∈ Jany∗;α; any∗K
then JsK(w) ⊆ JψK by assumption. Otherwise, JsK(w) = ∅ and so is trivially contained
in JψK.

Proof of α̂ ≤A α̂ & β. We will prove the claim by showing that

Jany∗; (α & β); any∗K ⊆ Jany∗;α; any∗K.

Let s be an element of the set Jany∗; (α & β); any∗K. Then there are sequences s1, s2

and s3 such that s2 ∈ Jα & βK and s = s1 ∗ s2 ∗ s3.
By definition of Jα & βK, there is some n such that s2 � n ∈ JαK. Thus, we can find

t1 and t2 such that s2 = t1 ∗ t2 and t1 ∈ JαK (namely, we take t1 = s2 � n). Then
s = s1 ∗ t1 ∗ (t2 ∗ s3) and hence s ∈ Jany∗;α; any∗K, as desired.

Finally, there is one more characteristic difference between long-term obligation and
prohibition. When we are obligated to pay a debt, say, or perform a promised act,
then we have an unsatisfied duty. This is not the same as being in violation nor is
there any obvious way of expressing this condition in terms of our violation predicate V .
Rather, we should introduce a new atomic proposition I (for indebtedness) to represent
the condition that an agent has some unfulfilled obligation and define O in terms of I .
We investigate some possible relations between I and V below.

Thus O(α) represents that α is a necessary means to ¬I , i.e. that a ¬I world will
not be reached unless we do some sequence in JαK. Therefore, we propose to define O(α)
by [α̂]I .

We give a few simple theorems regarding O in Table 6. The proofs are routine.
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Defining axiom

O(α) ≡ [α̂]I

PDeL theorems for O

O(β) → O(α) if α̂ ≤A β̂ O(α & β)→ O(α) ∧ O(β)

O(β) → O(α) if β ≤A α O(α;β) → O(α) ∧ O(β)

O(α) ≡ O(any∗;α) O(α) ∨ O(β) → O(α ∪ β)

O(α) ≡ O(α; any∗)

Table 6: The definition of O and some consequences.

There is an unfortunate consequence of this definition: if an agent is in a world in
which ¬I is unreachable, he is obligated to do everything, which is absurd. Thus, one
may be tempted to amend the definition so that O(α) is defined as

[α̂]I ∧ 〈any∗〉¬I.

We do not use this more complicated definition here, partly for simplicity’s sake and
partly for consistency with the prior definition of o. Also, the amended definition has
its own motivational problem: an agent that cannot reach ¬I is never obligated to do
anything, which seems similarly absurd.

We have presented only the most basic and useful theorems for O in Table 6, but
this list can be extended in many natural directions. For instance, if one is obligated to
do a and also b, then he is obligated to do a and later b or b and later a or both at once,
i.e.

O(a) ∧O(b) ≡ O((a; any∗; b) ∪ (b; any∗; a) ∪ (a & b)).

This is the long-term analogue of o(α & β) ≡ o(α) ∧ o(β) and applies to any pair of
1-uniform actions.

Another intuitive example: one expects that, if an agent is obliged to eventually do
α;β, then after doing α, he will still be obliged to do β. In fact, this is not quite the
case, if α is sufficiently complex, but a similar claim does hold. For this, let us introduce
a new action, . . . α.

Let J. . . αK be the set of sequences s such that (a) s ends in an α-sequence, i.e.
s = t ∗ t′ where t′ ∈ JαK and (b) no proper prefix of s ends in an α-sequence. In other
words, J. . . αK = Jany∗;αK \ Jany∗;α; any; any∗K. Then one can easily show:

|= O(α;β) → O(α) ∧ [. . . α]O(β).

In other words, the agent obligated to do α;β is still obligated to do β at the instant he
has first completed α. For atomic actions a, it is easy to see that . . . a = â; a, and thus

|= O(a;β)→ O(a) ∧ [â; a]O(β).

This formula is analogous to the formula o(α;β) → o(α) ∧ [α]o(β), which is valid if
JβK 6= ∅.

Because O is defined in terms of a new indebtedness proposition, we have lost the
strong connection between prohibition and obligation. In fact, we think this is natural:
long term obligations are not a simple conjugate of prohibition. They impose looser
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restrictions on behavior and cannot be captured in terms of V . Nonetheless, it would
be natural to suppose some connection between I and V and we briefly consider a few
proposals here.

Loosely, a moral agent aims to reach a world in which his obligation is relieved: he
aims to realize ¬I . This is not quite accurate, however, since new obligations may be
created before paying old ones. Borrowing from Peter to pay Paul relieves the obligation
to Paul at the expense of creating a new obligation and thus remaining in a state of
indebtedness. Nonetheless, this strategy is not obviously immoral (provided that Peter
is eventually repaid, perhaps by borrowing from Paul), regardless of its practical merits.
A moral agent may fulfill each obligation without ever reaching a ¬I-world!

On the other hand, perhaps one should avoid situations in which he can never fulfill
his outstanding obligations without first acquiring new ones. In such situations, the
agent has exceeded his ability to meet his duties. Thus, one may wish to relate I and
V by requiring that our models satisfy the axiom of eventual repayment :

[any∗]I → V (ER)

Alternatively, we may wish to restrict the ways in which an agent discharges his
obligations. One should not fulfill obligations by doing prohibited acts: it may be okay
to borrow from Peter to pay Paul, but robbing Peter is out of bounds. The natural way
to restrict such disreputable strategies is the converse of eventual repayment, which we
call the axiom of forbidden means :

V → [any∗]I (FM)

Thus, if one ever reaches a world in violation, he is thereafter in an I-world. With this
axiom, one can prove

O(α ∪ β) ∧ F (α)→ O(β).

(The proof depends on a proof of the abstruse property α̂ ∪ β ∪ (any∗;α; any∗) =A
β̂ ∪ (any∗;α; any∗), but is otherwise straightforward.)

One may adopt both of the above axioms. In this case, [any∗]I is equivalent to V .
But this means that, once in a V world, every path leads to a [any∗]I world, and hence
to another V world. Consequently, such models satisfy the axiom of unforgiveness :

V ≡ [any∗]V. (UF)

Once an agent is in violation, he remains there. This is an unforgiving model of deontic
logic!

4 The non-contiguous system

In the previous section, we explored long-term prohibitions and obligations of certain
kinds of actions, namely contiguous actions. The prohibition F (α;β) expresses that one
is never allowed to do α immediately followed by β, but it does not restrict one from
doing α, then something else and then β.

It seems reasonable that most prohibitions do involve such contiguous actions. One
is not allowed to aim the gun at an innocent and pull the trigger, but he can aim the
gun at an innocent4, then point it at the ground and pull the trigger. The effect of
aiming the gun can be undone before pulling the trigger.

4Let us briefly ignore very sensible rules regarding gun handling and safety and the very disturbing
effect caused by staring down the wrong end of a gun barrel.
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But in rare situations, the effects of doing α cannot be undone and thus one should
never do β thereafter. Suppose that a big yellow button arms a bomb and that, once
armed, it cannot be disarmed. Suppose also that a big red button detonates the bomb
if it is armed. Then one should never press the yellow button followed eventually by
pressing the red button. We denote this kind of prohibition by F ∗.

Admittedly, such strong prohibitions tend to be as artificial as our bomb example,
but we claim that long-term non-contiguous obligations are fairly common. We will
discuss these in Section 4.1, but let us first examine prohibitions.

We must introduce a few relations on sequences and actions in order to express non-
contiguous prohibitions. The first relation, s v t, expresses that s is a subsequence of
t and that the last element of s is the last element of t. Explicitly, r v s iff there is a
f : |r| → |s| satisfying the following:

• f is strictly increasing;

• f(|r| − 1) = |s| − 1;

• for every i < |r|, we have s(f(i)) = r(i).

In other words, r v s iff r is a subsequence of s such that the last element of r is also
the last element of s. We say in this case that r is a tail-fixed subsequence of s. See
Figure 3 for an illustration.

Properties of v

1. v is a partial order.

2. If s1 v t1 and s2 v t2 then s1 ∗ s2 v t1 ∗ t2.

3. If s1 ∗ s2 v t, then there are t1, t2 such that t = t1 ∗ t2, s1 v t1 and
s2 v t2.

4. If s v t then s v r ∗ t for any r.

5. If s1 ∗ s2 v t then s2 v t.

6. 〈x〉 v 〈x1, . . . , xn〉 iff x = xn.

Definition of α̃

Jα̃K = { s ∈ X<ω | ∃r ∈ JαK . r v s }
Properties of α̃

α ≤A α̃ α̃;β =A α̃; β̃

If α ≤A β then α̃ ≤A β̃ α̃ ∪ β =A α̃ ∪ β̃
α̃;β ≤A β̃ ã =A any∗; a
˜̃
β =A β̃ any∗ =A ãny∗

Table 7: Properties of v and eα.

We can express the intended meaning of long-term non-contiguous prohibition in
terms of v. Suppose that F ∗(β) and s ∈ JβK. Then any fully specified t satisfying s v t
will lead to violation. In order to express this prohibition on the level of action terms,
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Figure 3: Illustration of s v t.
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Figure 4: Illustration for v properties (2)
and (3).

we introduce an action constructor β̃ defined by

Jβ̃K = { s ∈ X<ω | ∃r ∈ JβK . r v s }.

Hence, α ≤A β̃ iff each s in JαK has some r in JβK as a tail-fixed subsequence. Thus, if

w |= F ∗(β) and α ≤A β̃, then w |= f(α).

In case α ≤A β̃, we say that α involves β. In this case, however one does α (whichever
fully specified sequence is chosen), one is doing β “along the way”, i.e. doing some t ∈ JβK
as a tail-fixed subsequence. For example, α involves a just in case each s ∈ JαK has as
last element some element of i(a).

We summarize properties of v and α̃ in Table 7.

4.1 Long-term non-contiguous prohibition and obligation

Defining axioms

F ∗(α) ≡ [α̃]V O∗(α) = [̂̃α]I

PDeL theorems for F ∗

[β̃]φ→ [α]φ if α ≤A β̃ F ∗(α)→ F (α)

F ∗(β)→ F ∗(α) if α ≤A β̃ F (a) ≡ F ∗(a)

F ∗(β)→ F ∗(α) if α ≤A β F ∗(α; a) ≡ [α̃]F (a)

F ∗(a;α) ≡ [any∗; a]F ∗(α) F ∗(α;β) ≡ [α̃]F ∗(β)

F ∗(α ∪ β) ≡ F ∗(α) ∧ F ∗(β) F ∗(α) ∨ F ∗(β)→ F ∗(α & β)

F ∗(β)→ F ∗(α;β)

PDeL theorems for O∗

O∗(α)→ O∗(β) if α̃ ≤A β̃ O(α) → O∗(α)

O∗(α)→ O∗(β) if α ≤A β O∗(α & β)→ O∗(α) ∧ O∗(β)

O∗(α;β) → O∗(α) ∧ O∗(β) O∗(α) ∨ O∗(β)→ O∗(α ∪ β)

O∗(α) ≡ O∗(any∗;α) O∗(a) ≡ O(a)

O∗(α) ≡ O∗(α; any∗)

Table 8: The long-term non-contiguous prohibition operator F ∗.
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We have already tipped our hand regarding the long-term non-contiguous prohibition
F ∗. When we say that β is forbidden in this sense, we mean that each fully specified
sequence s containing some t ∈ JβK as a tail-fixed subsequence leads to violation. In

other words, we define F ∗(β) ≡ f(β̃), equivalently F ∗(β) ≡ [β̃]V .

With this definition, one can easily derive F ∗(β) → f(α) whenever α ≤A β̃. In fact

we can derive a stronger consequence in this case. If α ≤A β̃ then α̃ ≤A ˜̃β =A β̃, so
` F ∗(β)→ F ∗(α).

w0

a
** w1

a //

b

jj •
V

Figure 5: A counterexample: w1 satisfies
f(a) ∧ ¬F (a) and w0 satisfies F (a; a) ∧
¬F ∗(a; a).

w
a // • b // • a // •

¬I

Figure 6: A counterexample: The world
w satisfies O∗(a; a) but not O(a; a).

This and other properties of F ∗ are presented in Table 8. Again, the proofs are
straightforward from the properties stated previously. We can also see now that the
three prohibition operators are comparable, with F ∗ the strongest and f the weakest,
since F ∗(α) → F (α) and F (α)→ f(α).

The converse implications are not valid, with a counterexample given in Figure 5
(where X = A and i : A → P+A is the singleton map a 7→ {a}). World w1 satisfies
f(a) but not F (a) since J〈b, a〉K(w1) 6⊆ JV K. World w0 satisfies F (a; a) but not F ∗(a; a),
since J〈a, b, a〉K 6⊆ JV K.

As we have admitted, long-term non-contiguous prohibitions may be fairly rare, since
they involve actions with effects that cannot be undone. However, it seems that non-
contiguous obligations are fairly common. Suppose that Peter owes Paul five dollars,
but does not have five dollars. Then he is obliged to first acquire five dollars (or more)
and then repay it. But he does not have to repay the money immediately after acquiring
it. Rather, he is free to do other things in between. Of course, if he loses the money
in between acquiring and repayment, then he cannot discharge his obligation — but we
are interested here in necessity rather than sufficiency, and it is necessary that he first
acquires and some time later repays.

This suggests the definition O∗(α) ≡ O(α̃), equivalently O∗(α) ≡ [̂̃α]I . Properties
for O∗ can be found in Table 8. The consequence relation between O and O∗ is dual to
that between F and F ∗, namely O(α) → O∗(α). Again, the converse does not hold, as
indicated in Figure 6.

Unfortunately, there is no simple relation between O and o. It is clearly not the case
that o(α) 6→ O(α), but this is not too surprising, since the motivation for o (avoiding
violation) is different than for O (eventually reaching ¬I). It is not hard to show that,
for 1-uniform α, the axiom (FM) proves (o(α) ∧ I) → O(α), but a tighter relationship
eludes us.

5 Concluding remarks

Meyer’s work on PDeL has contributed a formal logic for certain kinds of obligation
and prohibition, namely, the immediate kind. One of the nice features of his approach
is that the two normative concepts are inter-definable: obligation is the same as prohi-
bition from refraining. We aimed to extend his work to include duties of wider scope,
duties to never do α or to eventually do α. As we have seen, however, the natural
duality between obligation and prohibition has become obscured by our possible world
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semantics. Obligations are violated only in the limit, and this is not expressible in terms
of worlds reached along the way.

Our work is an extension of an existing framework for deontic logic to include new
normative expressions. But we also believe it suggests a new direction for dynamic
deontic logic. We would like to recover the duality between prohibitions and obligations
that seems so natural in the immediate case. To do so, one needs to evaluate actions in
terms of infinite X-sequences and W-paths rather than the worlds encountered at the
end of finite paths. In this conceptual setting, it makes sense to discuss failure to meet
obligations (i.e., never doing what is required) and adherence to long-term prohibitions
(i.e., never doing what is forbidden). Moreover, we believe that the topological approach
of learning theory gives a natural framework for investigating these infinite paths. We
hope to return to this topic in future work.

We also believe that some of our considerations provide argument for a hybrid of
dynamic and propositional deontic logic. In Section 4.1, we discussed the obligation to
obtain funds in order to repay one’s debt. But why does a debt impose an obligation to
obtain money? Because having money is a necessary precondition for repaying the debt
and obtaining money is a means to realize this precondition. It is natural to discuss
both ought-to-do and ought-to-be in explaining derivative obligations like the obligation
to obtain money. We would like a single framework that includes dynamic operators for
both actions and conditions and that allows for reasoning about derived obligations and
prohibitions. This would allow for new constructions like, “while φ, do α.” We expect
that existing work on agent planning would be relevant for this project.
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