
Simulations in Coalgebra

Jesse Hughes

Dept. Philosophy, Technical Univ. Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

J.Hughes@tm.tue.nl

Bart Jacobs

Dept. Computer Science, Univ. Nijmegen,

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

bart@cs.kun.nl http://www.cs.kun.nl/∼bart

Abstract

A new approach to simulations is proposed within the theory of coalgebras by tak-
ing a notion of order on a functor as primitive. Such an order forms a basic building
block for a “lax relation lifting”, or “relator” as used by other authors. Simulations
appear as coalgebras of this lifted functor, and similarity as greatest simulation.
Two-way similarity is then similarity in both directions. In general, it is different
from bisimilarity (in the usual coalgebraic sense), but a sufficient condition is formu-
lated (and illustrated) to ensure that bisimilarity and two-way similarity coincide.
Also, suitable conditions are identified which ensures that similarity on a final coal-
gebra forms an (algebraic) dcpo structure. This involves a close investigation of the
iterated applications F

n(∅) and F
n(1) of a functor F with an order to the initial

algebras and final objects.

1 Introduction

Simulations are relations between one (dynamical) system and another, ex-
pressing that if one system can do a move, then the other can do a similar
move. Simulations are heavily used for transition systems and automata (see
e.g. [15]), especially for refinement proofs. Also, they are studied in modal
logic [2], domain theory [16,7], category theory [22] (using spans, following
earlier, unpublished work of Claudio Hermida on modules). Here we study
simulations in a purely coalgebraic context, starting from a new, elementary
notion of ordering on a functor, and using familiar techniques based on “rela-
tion lifting” or “relators”. An early version appeared as [14].

Preprint submitted to Theoretical Computer Science 8 April 2004

The main contribution of the paper is systematisation, namely, systematisa-
tion of the definition, examples, results (for instance, about the properties of
the order) and connections (e.g. between two-way similarity and bisimilarity).
But many research issues remain.

Part of our work, especially in Sections 8–10, is also closely related to Jǐŕı
Adámek’s development in [1]. There, he defined an order on the final coalgebra
Z of a functor F such that Z was the ideal completion of the initial algebra
(under the same order). His order is not typically a simulation for some order
v, as we study here, and so his result is not subsumed by our work here.
Nonetheless, his approach informed many of the choices we made, especially
our emphasis of bottom elements.

The paper starts with our main definition, namely of order on a functor in
Section 2. These orders are combined with ordinary relation lifting (recalled
in Section 3) to form “lax relation liftings” in Section 4. Simulations then
appear as coalgebras of such lax relation lifting functors. Similarity is the
greatest simulation, and two-way similarity is similarity in both directions. Its
relation with ordinary bisimilarity is established in Section 6. Section 7 turns
the similarity order on a final coalgebra into a dcpo structure in presence of
a certain distributive law, or equivalently, a preservation property. Section 8
investigates the order on sets of terms F n(∅) and observations F n(1) that arise
in the construction of initial algebras and final coalgebras as ω-(co)limits. Sec-
tion 9 establishes that the limit order on such a final coalgebra coincides with
similarity (under a suitable preservation property). Section 10 then describes
conditions that guarantee that the final coalgebra forms an algebraic cpo in
which the finite elements arise from the finite elements from F n(1). Finally,
Section 11 shows how elements of F n(∅) appear within a final coalgebra as
those elements without infinite transitions.

2 Orders on functors

We shall write Sets for the category of sets and functions, and PreOrd for
the category of preorders (X,≤) (with ≤ a reflexive and transitive relation
on X) and order-preserving (monotone) functions between them. There is an
obvious forgetful functor PreOrd → Sets sending a preorder (X,≤) to its
underlying set X. This functor will remain unnamed.

Definition 2.1 Let F : Sets → Sets be an arbitrary endofunctor on Sets.
We define an order on F to be a functor v : Sets → PreOrd making the

2

following diagram commute.

PreOrd

��
Sets

F
//

v
55llllllllllllll
Sets

In this paper our examples are of a set-theoretic nature, so we restrict the
above notion to endofunctors on sets, and we do not strive for the highest level
of generality. But it is very easy to generalise it to other categories C. The
category PreOrd should then be suitably replaced by a category of preorders
in C (or even a fibred category of preorder relations over C in some logic).

In concrete terms, an order v on a functor F , as just defined, assigns to
each set X a preorder vX ⊆ F (X) × F (X) such that, for any Sets-map
f : X → Y , the function Ff : FX → FY is monotone with respect to vX and
vY . Preorderedness seems to be the minimal requirement that one wishes to
impose on such orders in the current setting.

Often, like in [16,7], notions of simulation are studied in an ordered setting,
where the functor F acts on some category of dcpos. In that case each X

and F (X) is a dcpo and thus automatically carries an order. Our approach is
minimal in a sense, because it only requires an order on the images F (X) of
F , and not on arbitrary objects.

Example 2.2 We illustrate the notion of order on a functor in the following
examples.

(1) For each functor F : Sets → Sets we have both the discrete order (only
equal elements are related) and the indiscrete one (any two elements are
related).

(2) Consider the functor S(X) = 1+(A×X) which adds a bottom element ∗
to a product set A×X, where A is an arbitrary, fixed set. The behaviours
of coalgebras of this functor consist of both finite and infinite sequences of
elements of A. The sets S(X) carry the familiar “flat” order: for u, v ∈
S(X),

u v v ⇐⇒ u 6= ∗ ⇒ u = v

⇐⇒ ∀a ∈ A.∀x ∈ X. u = (a, x)⇒ v = (a, x).

(In this formulation we have left the coproduct coprojections 1
κ1−→ 1 +

(A×X)
κ2←− A×X implicit.)

(3) Next we consider the list (or free monoid) functor L(X) = X?. A coal-
gebra of this functor maps an element to a finite list of successor states
〈x0, . . . , xn−1〉, so that order and multiplicity of such states matter. Sev-

3

eral orderings on L are possible, which may or may not take the order
and multiplicity into account.

〈x0, . . . , xn−1〉 v1 〈y0, . . . , ym−1〉

⇐⇒ there is a strictly monotone function

ϕ : {0, 1, . . . , n− 1} → {0, 1, . . . ,m− 1}

with xi = yϕ(i), for i < n.

Strict monotonicity means that i < j implies ϕ(i) < ϕ(j). As a result,
ϕ is injective, and n ≤ m. This order v1 basically says that the smaller
sequence can be obtained by removing elements from the bigger one.

Our second ordering on L is much simpler, and ignores much of the
existing structure:

〈x0, . . . , xn−1〉 v2 〈y0, . . . , ym−1〉 ⇐⇒ ∀i < n.∃j < m. xi = yj.

Thus, for different elements x, y, z ∈ X we have 〈x, z〉 vi 〈x, x, y, z〉 for
both i = 1, 2. But 〈y, x, x〉 vi 〈x, y〉 only holds for i = 2. Clearly, v1⊆v2.

(4) Our next example involves the related “bag” functor B, capturing free
commutative monoids (as algebras of the associated monad). It can be
described as:

B(X) = {α : X → N | only finitely many x ∈ X have α(x) 6= 0}.

Often one says that such an α has “finite support”. When using the bag
instead of the list functor, we care about multiplicities α(x) of elements
x ∈ X, but not about the order in which they occur. Like before we con-
sider two orderings on the functor B. The first explicitly includes a mul-
tiplicity requirement:

α v1 β ⇐⇒ ∀x ∈ X.α(x) ≤ β(x).

When we wish to ignore multiplicities and only consider occurrences we
order as follows:

α v2 β ⇐⇒ ∀x ∈ X.α(x) 6= 0⇒ β(x) 6= 0.

This says that if x occurs in α, then it should also occur in β, without
regard to the multiplicities of each.

(5) Our final example involves the powerset functor P with a set A of “labels”,
in the functor T (X) = P(X)A ∼= P(A×X). As is well-known, coalgebras
of this functor are labeled transition systems. The obvious order on α, β ∈
T (X) is pointwise inclusion:

α v β ⇐⇒ ∀a ∈ A.α(a) ⊆ β(a).

4

At the end of this section we like to point out that our general notion of order
on a functor, as given in Definition 2.1, allows us to formulate general results
like: given a natural transformation σ : F ⇒ G, then an order vG on G induces

an order vF
def
= σ∗(vG) on F , namely as u vF v ⇐⇒ σX(u) vG σX(v), for

u, v ∈ F (X). In this way one can organise orders in a category which is fibred
over a category of endofunctors.

Also, for a functor F with order v one can define a category CoAlgv(F) of

F -coalgebras with “simulation mappings”: a map f from X
c
−→ F (X) to

Y
d
−→ F (Y) in CoAlgv(F) is then a function f : X → Y with F (f)(c(x)) v

d(f(x)) on F (Y). Such a category is sometimes used for transition systems
(see [5, Definition 11], if one wants maps to only preserve (and not reflect)
transitions.

3 A recap on relation lifting and bisimulations

We shall write Rel for the category of binary relations. Its objects are arbitrary
relations R ⊆ X1 ×X2; and its morphisms from R ⊆ X1 ×X2 to S ⊆ Y1 × Y2

are pairs of functions f1 : X1 → Y1, f2 : X2 → Y2 between the underlying sets
which preserve the relation, in the sense that R(x1, x2) ⇒ S(f1(x1), f2(x2)).
There is then an obvious forgetful functor Rel → Sets × Sets mapping a
relation to its underlying sets. Notice that there is a full and faithful embedding
PreOrd ↪→ Rel, describing preorders as a subcategory.

It is fairly standard in the theory of coalgebras [9,12] to associate with an
endofunctor F : Sets → Sets a relation lifting Rel(F) : Rel → Rel in a
diagram:

Rel

��

Rel(F) // Rel

��
Sets× Sets

F × F
// Sets× Sets

For an arbitrary functor, this relation lifting Rel(F) can be defined on a rela-
tion 〈r1, r2〉 : R ↪→ X1 ×X2 by taking the image of the pair

〈F (r1), F (r2)〉 : F (R) −→ F (X1)× F (X2),

see e.g [4,17]. In the language of fibred categories, then,

Rel(F)(R) =
∐

(Fr1,F r2)
F (R)

5

and in set-theoretic terms,

Rel(F)(R)

= {(u, v) ∈ FX1 × FX2 | ∃w ∈ F (R). F (r1)(w) = u and F (r2)(w) = v}.

For the special case of polynomially defined functors F , Rel(F) may equiva-
lently be defined by induction on the structure of F , see e.g. [12].

This relation lifting is assumed to satisfy the following properties.

(1) Equality is preserved: Rel(F)(=X) = =F (X).
(2) Composition is preserved: for R ⊆ X × Y and S ⊆ Y ×Z, the relational

composition 1 S ◦ R = {(x, z) | ∃y.R(x, y) ∧ S(y, z)} satisfies:

Rel(F)(S ◦ R) = Rel(F)(S) ◦ Rel(F)(R).

(3) Inclusions are preserved: if R ⊆ S then Rel(F)(R) ⊆ Rel(F)(S).
(4) Reversals are preserved: Rel(F)(Rop) = Rel(F)(R)op.
(5) Inverse images (or substitution, or reindexing) is preserved: for functions

f1 : X1 → Y1, f2 : X2 → Y2 and a relation S ⊆ Y1 × Y2 we have:

Rel(F)
(

(f1 × f2)
−1(S)

)

= (F (f1)× F (f2))
−1

(

Rel(F)(S)
)

.

All these properties hold for functors F that preserve weak pullbacks.

For example, as a consequence, the graph relation

Graph(f) = (f × id)−1(=Y) ⊆ X × Y

of a function f : X → Y satisfies

Rel(F)
(

Graph(f)
)

= Graph(F (f)).

A bisimulation is then just a Rel(F)-coalgebra. It is a map in Rel over two
maps in Sets, which are the underlying coalgebras. Concretely, in terms of
such coalgebras c : X → F (X) and d : Y → F (Y) of the same functor F , a
bisimulation (between c and d) is a relation R ⊆ X×Y satisfying for all x ∈ X
and y ∈ Y ,

R(x, y) =⇒ Rel(F)(R)(c(x), d(y)).

1 Note that we write relational composition in the same order as ordinary functional
composition.

6

Or, pictorially, as a map in Rel:

R
��

��

//________ Rel(F)(R)
��

��
X × Y

c× d
//F (X)× F (Y)

The next result mentions some standard properties (see e.g. [18]) that are
relevant in the current setting. Proofs are omitted.

Proposition 3.1 Let F be an endofunctor on Sets with a relation lifting
functor Rel(F) as described above. Then, with respect to coalgebras X

c
→ FX

and Y
d
→ FY one has that:

(1) Bisimulations are closed under arbitrary unions; as a result, there is a
greatest bisimulation relation ↔ ⊆ X × Y , which is called bisimilarity.

(2) The equality relation =X ⊆ X ×X is a bisimulation (for the single coal-
gebra c). Similarly, bisimilarity ↔ ⊆ X ×X is an equivalence relation.

(3) An arbitrary function f : X → Y is a homomorphism of coalgebras (that
is, satisfies d ◦ f = F (f) ◦ c) if and only if its graph relation Graph(f)
is a bisimulation.

Hence if f is a homomorphism, then x↔ f(x).
(4) For a homomorphism f : X → Y and elements x, x′ ∈ X one has x↔ x′

iff f(x)↔ f(x′).

(5) If F has a final coalgebra Z
∼=−→ FZ, then bisimilarity on Z is equality.

Hence for x ∈ X and y ∈ Y one has x↔ y iff !(x) = !(y)—where ! is the
unique homomorphism to the final coalgebra. �

Example 3.2 We briefly describe bisimulations for the examples from the
previous section.

(1) Consider two coalgebras X
c
→ S(X), Y

d
→ S(Y) of the sequence functor

S(X) = 1 + (A × X). A relation R ⊆ X × Y is a bisimulation iff for
all x ∈ X and y ∈ Y with R(x, y) we have either c(x) = d(y) = ∗, or
c(x) = (a, x′) and d(y) = (b, y′) with a = b and R(x′, y′).

(2) For two list-functor coalgebras X
c
→ X?, Y

d
→ Y ? we have z ↔ w iff

there is a relation R ⊆ X × Y with R(z, w) such that for all elements
x ∈ X and y ∈ Y , if R(x, y), then if c(x) = 〈x0, . . . , xn−1〉 and if d(y) =
〈y0, . . . , ym−1〉, then n = m and R(xi, yi) for all i < n.

(3) For bag-coalgebras X
c
→ B(X), Y

d
→ B(Y) the situation is more compli-

cated. A relation R is a bisimulation iff for all x ∈ X and y ∈ Y with
R(x, y) there is a γ : R→ N such that the following hold.
• γ(x, y) = 0 for all but finitely many x and y.
• c(x)(x′) =

∑

y′{γ(x
′, y′) | R(x′, y′)}

• d(y)(y′) =
∑

x′{γ(x
′, y′) | R(x′, y′)}.

7

(4) Finally, for transition system coalgebras X
c
→ P(X)A, Y

d
→ P(Y)A, a

relation R ⊆ X × Y is a bisimulation as defined above iff it is a (strong)
bisimulation in the usual sense: if R(x, y), then both:
• if x

a
−→ x′ (i.e., x′ ∈ c(x)(a)), then there is an y′ ∈ Y with y

a
−→ y′

and R(x′, y′).
• if y

a
−→ y′, then there is an x′ ∈ X with x

a
−→ x′ and R(x′, y′).

4 Lax relation lifting and simulations

In the previous section we have seen how bisimulations were defined as coalge-
bras. We shall follow the same approach in this section for simulations. They
are defined as coalgebras of a “lax relation lifting” functor Relv(F) which is
defined as a suitable combination of an order v on an endofunctor F and
standard relation lifting.

Definition 4.1 For an endofunctor F : Sets → Sets carrying a relation v
(as in Definition 2.1) we define a lax relation operation Relv(F) as:

R 7−→ vY ◦ Rel(F)(R) ◦vX

= {(u, v) | ∃u′, v′. u vX u′ ∧ (u′, v′) ∈ Rel(F)(R) ∧ v′ vY v}

= {(u, v) | ∃w ∈ F (R). u vX F (r1)(w) ∧ F (r2)(w) vY v}

= (Fr2 × idFY)−1 vY ◦ (idFX × Fr1)
−1 vX ,

where R has projections 〈r1, r2〉 : R ↪→ X × Y .

In other terms,

Relv(F)(R) =
∐

(π1,π3)

(

(π1, F (r1) ◦ π2)
−1(vX) ∩ (F (r2) ◦ π2, π3)

−1(vY)
)

,

as in the diagram below.

FX × FX FX × FR× FY
(F (r2) ◦ π2, π3) //(π1, F (r1) ◦ π2)oo

(π1, π3)
��

FY × FY

FX × FY

A simulation is then defined as a Relv(F)-coalgebra.

What we call lax relation lifting is called a relational extension in [10] and a
(weak) relator in [20,2].

Lemma 4.2 For F with order v as above we have:

8

(1) Relv(F) is a functor in commuting diagram:

Rel

��

Relv(F) // Rel

��
Sets× Sets

F × F
// Sets× Sets

(2) Relv(F)(=) =v.
(3) R ⊆ S ⇒ Relv(F)(R) ⊆ Relv(F)(S).
(4) Relv(F)(Rop) = Relvop(F)(R)op

(5) Simulations are closed under arbitrary unions.
(6) If R is a bisimulation, then both R and Rop are simulations.
(7) For every f : X → Z and g : Y → W ,

Relv(F)
(

(f × g)−1(R)
)

⊆ (Ff × Fg)−1

(

Relv(F)(R)
)

.

(8) For every f : X → Z and g : Y → W ,

∐

Ff×Fg

(

Relv(F)(R)
)

⊆ Relv(F)
(

∐

f×g
R

)

.

Proof. We prove each claim in turn.

(1) Consider a morphism R → S in Rel, consisting of relations R ⊆ X × Y
and S ⊆ Z × W with functions f : X → Z and g : Y → W between
the underlying sets with R(x, y) ⇒ S(f(x), g(y)). Assuming (u, v) ∈
Relv(F)(R) we have to prove that (F (f)(u), F (g)(v)) ∈ Relv(F)(S).
The assumption gives us u′ ∈ F (X) and v′ ∈ F (Y) with u v u′, (u′, v′) ∈
Rel(F)(R) and v′ v v. Since v and Rel(F) are functors we then get
Ff(u) v Ff(u′), (Ff(u′), Fg(v′)) ∈ Rel(F)(S) and Fg(v′) v Fg(v).
This establishes our goal.

(2) Because:

Relv(F)(=) = v◦ Rel(F)(=) ◦v

= v◦ = ◦v

= v◦v

= v, since v is transitive.

(3) Obvious, because ordinary relation lifting preserves inclusions.

9

(4) Because:

(u, v) ∈ Relv(F)(Rop)

⇐⇒ ∃u′, v′. u v u′ ∧ (u′, v′) ∈ Rel(F)(Rop) ∧ v′ v v

⇐⇒ ∃u′, v′. u′ vop u ∧ (u′, v′) ∈ Rel(F)(R)op ∧ v vop v′

⇐⇒ ∃u′, v′. v vop v′ ∧ (v′, u′) ∈ Rel(F)(R) ∧ u′ vop u

⇐⇒ (v, u) ∈ Relvop(F)(R)

⇐⇒ (u, v) ∈ Relvop(F)(R)op.

(5) Since composition of relations and ordinary relation lifting preserve in-
clusions.

(6) If R is a bisimulation then so is Rop, and hence R and Rop are simulations
because v is reflexive.

(7) Suppose that (u, v) ∈ Relv(F)((f × g)−1R). Then, there are u′, v′ such
that

u v u′ ∧ (u′, v′) ∈ Rel(F)((f × g)−1R) ∧ v′ v v.

Since relation lifting preserves inverse images, we see that

(u′, v′) ∈ (Ff × Fg)−1Rel(F)(R),

i.e., (Ff(u′), Fg(v′)) ∈ Rel(F)(R). Thus,

Ff(u) v Ff(u′) ∧ (Ff(u′), Fg(v′)) ∈ Rel(F)(R) ∧ Fg(v′) v Fg(v)

and so (u, v) ∈ (Ff × Fg)−1Relv(F)(R).
(8) By (7), we have

Relv(F)((f × g)−1
∐

f×g
R) ⊆ (Ff × Fg)−1Relv(F)(

∐

f×g
R),

and hence, since
∐

f×g a (f × g)−1,

∐

Ff×Fg
Relv(F)(R) ⊆

∐

Ff×Fg
Relv(F)((f × g)−1

∐

f×g
(R))

⊆ Relv(F)(
∐

f×g
R). �

Definition 4.3 We say that F with order v is stable if the associated lax
relation lifting operation Relv(F) commutes with substitution. This means that
the inclusion ⊆ in Lemma 4.2 (7) is an equality.

Throughout, we will consider the following class of polynomial functors (with
order) as a running example. These functors are of special interest to us, as
they provide the basic examples of functors in which the final coalgebra Z is
an algebraic cpo, as we will see in Section 10.

Definition 4.4 Poly is the least class of functors closed under the following.

10

• For every pre-order (A,≤)A, the constant functor X 7→ A with the order

given by vX = ≤A is in Poly.

• The identity functor X 7→ X with vX = =X is in Poly.

• Given two polynomial functors F1 and F2, the product functor F1×F2 with
componentwise order is in Poly.

• Given polynomial F , the functor FA taking X 7→ (FX)A with order

α v β ⇐⇒ ∀a ∈ A.α(a) vF β(a)

is in Poly.
• Given F1 and F2 with orders v1 and v2 respectively, the functor F1 + F2

with vX the disjoint union of v1
X and v2

X is in Poly.
• Consider again the functor F1 + F2, but with the concatenation order

a v′
X b iff a vX b or (a ∈ F1X and b ∈ F2X),

where vX is as in the previous item. This ordered functor is again in Poly.
(We use this order for the functor S(X) = 1+(A×X) in Example 2.2 (2).)

Every polynomial functor is stable. However, not all of our examples involve
polynomial functors. We extend the result presently.

If F has a stable order vF , then the following are also stable.

• The functor P ◦ F , with order

S v T ⇐⇒ ∀s ∈ S.∃t ∈ T. s vF t.

• The functor L ◦ F , where L is the list functor from Example 2.2 (3).
As before, there are two evident derived orders. The first is a strict order
involving multiplicities: 〈x0, . . . , xn−1〉 v1 〈y0, . . . , ym−1〉 iff there is a strictly
monotone function ϕ : {0, 1, . . . , n−1} → {0, 1, . . . ,m−1} with xi v

F yϕ(i),
for i < n.

The second is a simpler order, given by: 〈x0, . . . , xn−1〉 v2 〈y0, . . . , ym−1〉
iff for each i < n there is a j < m with xi v

F yj.

Finally, the bag functor B is stable with either order v1 or v2 from Exam-
ple 2.2 (4).

Thus, all of the functors from Example 2.2 are stable.

In fact, the orders in which we are interested satisfy a stronger condition than
stability, namely: for every f : X → Y , we have

(id× Ff)−1 vY ⊆
∐

Ff×id
vX . (1)

11

One can show that F satisfies (1) iff (a) F is stable and (b) for every relation
R ⊆ X × Y ,

Rel(F)(R) ◦vX ⊆ vY ◦ Rel(F)(R).

One finds that checking (1) is typically easier than checking stability. All of
our constructions above preserve (1), save one. The functor F1 + F2 with
concatenation order v′ need not satisfy (1) when F1 and F2 do. However, if
F1 is constant and F2 satisfies (1), then so does F1 + F2, which applies to our
examples.

It seems that stability is a most reasonable condition to require for an order
on a functor. We shall require and use it throughout.

The condition is not trivial, however. Functors with “lexicographic” ordering
need not be stable. In particular, consider the functor FX = 2×X with the
order

(n, x) vX (m, y) iff n < m or (n = m and x = y).

This order is not stable. For example, consider X = {x} and Y = {y} with
the functions inX : X → X + Y and inY : Y → X + Y . The reader may check
that the pair of elements (0, x), (1, y) is in the relation

(F inX ×F inY)−1Relv(F)(=X+Y)

but not in the relation

Relv(F)((inX × inY)−1 =X+Y).

Example 4.5 We describe concrete simulations using the functors from Ex-
amples 2.2 and 3.2. Note that each of these functors is stable.

(1) For two sequence coalgebras X
c
→ S(X), Y

d
→ S(Y) of the sequence

functor S(X) = 1+(A×X) a relation R ⊆ X×Y is a simulation iff for all
x ∈ X and y ∈ Y with R(x, y) we have (c(x), d(y)) ∈ Relv(S)(R)—where
the order v is as described in Example 2.2 (2). This means that there
are u, v with c(x) v u, (u, v) ∈ Rel(F)(R) and v v d(y). If c(x) = ∗ this
yields no information, but if c(x) = (a, x′) we know that u = (a, x′), and
so that v = (a, y′) with R(x′, y′). But then d(y) = (a, y′). In conclusion, if
R(x, y), then either x is an empty sequence (c(x) = ∗), or c(x) = (a, x′)
and d(y) = (a, y′) with R(x′, y′).

(2) For the list functor L(X) = X? we have seen two orderings v1 and v2 in

Example 2.2 (3). Hence for two list-functor coalgebras X
c
→ X?, Y

d
→ Y ?

there are two associated notions of simulation. A relation R ⊆ X×Y is a
simulation for v1 if R(x, y) implies the following: If c(x) = 〈x0, . . . , xn−1〉
and if d(y) = 〈y0, . . . , ym−1〉, then there is a strictly monotone function
ϕ : {0, 1, . . . , n− 1} → {0, 1, . . . ,m− 1} with R(xi, yϕ(i)) for each i < n.

For the second order v2 we would only have: ∀i < n.∃j < m.R(xi, yj).

12

(3) For the bag functor B we only consider the first ordering v1 from Exam-

ple 2.2 (4). For two coalgebras X
c
→ B(X), Y

d
→ B(Y) a relation R is a

simulation (wrt. v1) iff for all x ∈ X and y ∈ Y with R(x, y), there is a
γ : R→ N such that γ is zero almost everywhere and
• For each x′ ∈ X, one has c(x)(x′) ≤

∑

y′{γ(x
′, y′) | R(x′, y′)}

• For each y′ ∈ Y , one has d(y)(y′) ≥
∑

x′{γ(x
′, y′) | R(x′, y′)}.

(4) Finally, for transition system coalgebras X
c
→ P(X)A, Y

d
→ P(Y)A, a

relation R ⊆ X × Y is a simulation with respect to the inclusion iff it is
a simulation in the usual sense: if R(x, y), then x

a
−→ x′ implies there is

an y′ ∈ Y with y
a
−→ y′ and R(x′, y′).

5 Similarity

As a result of point (5) in Lemma 4.2 we can take, for given coalgebras, the
union of all simulations and obtain again a simulation, for which we shall write
.. It will be called similarity.

As one may expect, similarity arises as a greatest fixed point for a Rel-functor.

Lemma 5.1 Let α : A→ FA and β : B → FB be F -coalgebras. The similar-
ity order . between A and B is the greatest fixed point for the functor

R 7→ (α× β)−1Relv(F)(R).

Proof. It is clear that . contains any fixed point for this functor, so it is
sufficient to show that . itself is a fixed point.

Clearly, . ⊆ (α× β)−1Relv(F)(.). For the other direction, suppose that we

have α(a) Relv(F)(.) β(b). Then . ∪{(a, b)} is a simulation, and hence
(a, b) ∈.. �

Since the equality relation is a bisimulation, it is included in similarity. Hence
similarity is a reflexive relation. In this section we shall look at properties
(especially related to transitivity) and examples of similarity. The next section
will concentrate on “two-way similarity”, i.e., on . ∩ .op.

Example 5.2 Transition system simulations, see Example 4.5 (4), are related
to trace inclusions in the following (standard) way. For a state x in a transition
system with label set A we define:

trace(x)

= {〈(x0, a0), (x1, a1), . . .〉 ∈ (X × A)∞ | x0 = x ∧ ∀i ∈ N. xi
ai−→ xi+1}

13

behtrace(x) = {(π2)
∞(σ) ∈ A∞ | σ ∈ trace(x)}.

Thus, the elements of behtrace(x) are the (finite or infinite) sequences of labels
that may occur via transitions out of x.

Given a simulation R with R(x, y), for each trace

σ = 〈(x0, a0), (x1, a1), . . .〉 ∈ trace(x)

there is a τ = 〈(y0, a0), (y1, a1), . . .〉 ∈ trace(y) with R(xi, yi). We thus see that

x . y =⇒ behtrace(x) ⊆ behtrace(y).

For this reason simulations form a standard ingredient of proofs of refinement
(i.e., behaviour trace inclusion), where x is an initial state of an implementa-
tion, and y is an initial state of an abstract system (the specification) describ-
ing the appropriate behaviour.

What is special about the approach in this paper is that we take orderings on
functors as primitive, and define lax relation lifting in terms of this order (and
ordinary relation lifting, which is seen as canonical and taken for granted).
In [10] such a lifting (or relational extension, as it is called there) is taken
as primitive, subject to certain requirements. For a comparison we recall this
approach. A relational extension (for a given endofunctor F) is a mapping G
sending a relation R ⊆ X × Y to a relation GR ⊆ FX × FY such that:

(1) =FX ⊆ G(=X)
(2) R ⊆ S ⇒ GR ⊆ GS

(3) GR ◦ GS = G(R ◦ S)
(4) “functoriality”

This last requirement is written out in detail, but amounts to the property
that G is a functor Rel→ Rel as in Lemma 4.2 (1). Interestingly, a “normal
form” is proven in [10] (Lemma 1) showing that each relator can be described
as a composite like in Definition 4.1, where the order v is G(=). This shows
that our approach—with a defined operation Relv(F) instead of an assumed
G—is more primitive.

However, the third condition about preservation of composition requires some
attention in our approach. It follows from stability, as shown in [20, Theo-
rem 2.2.2].

Lemma 5.3 For a functor F with stable ordering v, lax relation lifting pre-
serves composition of relations:

Relv(F)(R ◦ S) = Relv(F)(R) ◦ Relv(F)(S).

14

(The inclusion ⊆ always holds, because ordinary relation lifting preserves com-
positions, and v is reflexive.)

Proof. We need to prove ⊇. Assume 〈s1, s2〉 : S ↪→ X × Y and 〈r1, r2〉 : R ↪→
Y × Z. Then:

Relv(F)(R) ◦ Relv(F)(S)

= (Fr2 × id)−1 v◦ (id× Fr1)
−1 v◦ (Fs2 × id)−1 v◦ (id× Fs1)

−1 v

by Definition 4.1

= (Fr2 × id)−1 v◦ (Fs2 × Fr1)
−1(v◦v) ◦ (id× Fs1)

−1 v

= (Fr2 × id)−1 v◦ (Fs2 × Fr1)
−1Relv(F)(=Y) ◦ (id× Fs1)

−1 v

= (Fr2 × id)−1 v◦ Relv(F)
(

(s2 × r1)
−1 =Y

)

◦ (id× Fs1)
−1 v

by stability

= v◦
∐

Fs1×Fr2
Relv(F)

(

(s2 × r1)
−1 =Y

)

◦v

⊆ v◦ Relv(F)
(

∐

s1×r2
(s2 × r1)

−1 =Y

)

◦v

by Lemma 4.2 (8)

= Relv(F)(R ◦ S) �

Here are some consequences of the preservation property of this lemma.

Proposition 5.4 Let F be a functor with a stable ordering v. Then:

(1) Simulations are closed under composition.
(2) Similarity is a transitive relation.
(3) For homomorphisms f , g between coalgebras,

x . y ⇐⇒ f(x) . g(y).

(4) Similarity . on the final coalgebra is the final Relv(F)-coalgebra.

Proof. We prove each in turn.

(1) Obvious, because relation composition preserves inclusions.
(2) Suppose x . y and y . z. Then there are simulations R,S with R(x, y)

and S(y, z). Hence (S ◦ R)(x, z), and so x . z because S ◦ R is a
simulation by (1).

(3) Since f is a homomorphism of coalgebras, its graph relation Graph(f)
is a bisimulation. Hence both Graph(f) and Graph(f)op are simulations.
This means that both x . f(x) and f(x) . x. Similarly, y . g(y) and
g(y) . y. Hence we can easily prove the third point in the proposition,
using the second:

(⇒) If x . y, then f(x) . x . y . g(y) so that f(x) . g(y).

15

(⇐) If f(x) . g(y), then x . f(x) . g(y) . y, so that x . y.

(4) Let R be a simulation over A
α
→ F (A) and B

β
→ F (B) and let !A : A →

Z and !B : B −→ Z be the unique homomorphisms into the final F -

coalgebra ζ : Z
∼=−→ F (Z) and consider the following diagram.

R //
��

��

$$

Relv(F)(R)

zz

��

��

. //
��

��

Relv(F)(.)
��

��
Z × Z //FZ × FZ

A×B //

99ssssssssss
FA× FB

eeKKKKKKKKKK

By (3), there is a (necessarily unique) arrow R→. in Rel, as shown on
the left. By functoriality of Relv(F) we have Relv(F)(R)→ Relv(F)(.)
on the right. One must show that thisR→. is a Relv(F)-homomorphism,
i.e., that the top trapezoid commutes. This follows by the fact that
Relv(F)(.)→ FZ × FZ is monic. �

Here is another consequence, that will be generalised subsequently.

Lemma 5.5 Let F : Sets → Sets have a stable order v. Then F extends to
F : PreOrd→ PreOrd by 〈X,≤〉 7→ 〈FX,Relv(F)(≤)〉.

Proof. We need to show that Relv(F)(≤) is reflexive and transitive. Reflex-
ivity is easy, because =X ⊆ ≤ implies

=F (X)⊆v = v ◦ =F (X) ◦ v

= v ◦ Rel(F)(=X) ◦ v

⊆ v ◦ Rel(F)(≤) ◦ v= Relv(F)(≤).

For transitivity we use Lemma 5.3:

Relv(F)(≤) ◦ Relv(F)(≤) = Relv(F)(≤ ◦ ≤) = Relv(F)(≤). �

Definition 5.6 For a subcategory C ↪→ PreOrd we say that F with stable v
preserves C if F from the previous lemma restricts to C as in:

C� _

��

〈X,≤〉 7→

〈FX,Relv(F)(≤)〉
// C� _

��
PreOrd

F
// PreOrd

16

Later we shall use this definition especially when C is the category of dcpo’s
or of algebraic cpo’s.

Example 5.7 We recall that the final coalgebra for the sequence functor S(X) =
1+(A×X) is the set A∞ of finite and infinite sequences with coalgebra struc-

ture A∞
∼=−→ 1 + (A× A∞) given by

σ 7−→







∗ if σ is the empty sequence 〈〉

(a, σ′) if σ = a · σ′ with head a and tail σ′.

This set of sequences A∞ carries the usual “prefix” order:

σ ≤ τ ⇐⇒ σ · ρ = τ, for some ρ ∈ A∞.

We claim that this prefix order is the same as similarity.

The inclusion ≤ ⊆ . is easy, because ≤ is a simulation: if σ ≤ τ , say via
σ · ρ = τ , and σ = a · σ′, then τ = a · τ ′ where σ′ · ρ = τ ′. This shows σ′ ≤ τ ′.

For the reverse inclusion . ⊆ ≤ we assume σ . τ , say via a simulation R ⊆
A∞×A∞ with R(σ, τ). We determine elements a0, a1, . . . ∈ A and σ0, σ1, . . . ∈
A∞ with for each n, σ = a0 ·a1 · · · an ·σn. By induction we find τ0, τ1, . . . ∈ A

∞

with for each n, τ = a0 · a1 · · · an · τn. There are two cases:

• σ is finite, say, σ = a0 · · · an. Then τ = σ · τn, so that σ ≤ τ .
• σ is infinite. Then σ = τ , and thus also σ ≤ τ .

As a consequence of Proposition 5.4 (3) we now have for arbitrary sequence

coalgebras X
c
→ S(X), Y

d
→ S(Y) and elements x ∈ X, y ∈ Y ,

x . y ⇐⇒ !(x) ≤ !(y),

where ! is the unique homomorphism to the final coalgebra and ≤ is its prefix
order.

6 Two-way similarity

Having seen similarity ., we define two-way similarity as ∼= . ∩ .op,
i.e., as:

x ∼ y
def
⇐⇒ x . y and y . x.

An immediate consequence of Lemma 4.2 (6) is that bisimilarity implies two-
way similarity: ↔⊆∼. In this section we are interested in the converse, i.e.,

17

in whether or not ∼⊆↔. The next examples show that this may or may not
be the case.

Example 6.1 We give an example in which ∼⊆↔, and one in which the
inclusion fails.

(1) Let’s consider the sequence example, with two coalgebras X
c
→ 1+(A×X)

and Y
d
→ 1 + (A × Y). Assume x ∼ y. Then there are simulations R ⊆

X × Y and S ⊆ Y ×X with R(x, y) and S(y, x). The fact that R and S
are simulations means that for all z ∈ X,w ∈ Y :
(a) R(z, w) and c(z) = (a, z ′) implies d(w) = (a, w′) with R(z′, w′).
(b) S(w, z) and d(w) = (a, w′) implies c(z) = (a, z′) with S(w′, z′).
We claim that T = (R∩Sop) ⊆ X×Y is a bisimulation with T (x, y). The
last point is obvious. In order to show that T is a bisimulation, assume
T (z, w). Then:
• If c(z) = ∗ but d(w) = (a, w′), then we get a contradiction by (1b)

above. Hence d(w) = ∗. The reverse implication is obtained similarly.
• If c(z) = (a, z′), then d(w) = (a, w′) with R(z′, w′), by (1a). Apply-

ing (1b) yields that c(z) = (a, z ′′) with S(w′, z′′). But then we get
z′ = z′′, so that T (z′, w′), as required.

(2) Here is a simple variation on the previous example. Let F (X) = X +X

with order v given by:

u v v ⇐⇒ ∀x ∈ X. u = κ2(x)⇒ v = κ2(x).

Notice that no relation is required in case u is in the first (left) component
of X +X.

The associated notion of similarity says, for given coalgebras c : X →
X+X and d : Y → Y +Y , that R ⊆ X×Y is a simulation if for each x, y
with R(x, y) one has that if c(x) = κ2(x

′), then d(y) must be of the form
κ2(y

′) with R(x′, y′). In case we have a two-way similarity there must also
be a relation S with S(y, x) implies that d(y) = κ2(y

′), then c(x) = κ2(x
′)

with S(y′, x′).
But this is not the same as bisimilarity for this functor, because then

we must also have a relation in the first components of the coproduct +:
R ⊆ X × Y is a bisimulation if R(x, y) implies both:
• if c(x) = κ1(x

′), then d(y) = κ1(y
′) with R(x′, y′);

• if c(x) = κ2(x
′), then d(y) = κ2(y

′) with R(x′, y′).

In the second example we see that there is something missing from the rela-
tion v that ensures that two-way similarity implies bisimilarity. The following
result gives a sufficient condition.

Theorem 6.2 Let F be a functor with a relation v such that the associated

18

relation liftings satisfy the condition:

Relv(F)(R1) ∩ Relvop(F)(R2) ⊆ Rel(F)(R1 ∩R2).

Then two-way similarity (for coalgebras of this functor) is the same as bisim-
ilarity:

x↔ y ⇐⇒ x ∼ y.

Proof. We only need to prove the direction (⇐), and so we assume x ∼ y, say
via simulations R,S with R(x, y) and S(y, x). The fact that R,S are simula-

tions says that R ⊆ (c× d)−1
(

Relv(F)(R)
)

and S ⊆ (d× c)−1
(

Relv(F)(S)
)

.

We take as new relation T = (R ∩ Sop), like in Example 6.1 (1). Clearly,
T (x, y). We are done if we can show that T is a bisimulation, i.e., satisfies

T ⊆ (c× d)−1
(

Rel(F)(T)
)

. But:

Sop ⊆
(

(d× c)−1Relv(F)(S)
)op

= (c× d)−1
(

Relv(F)(S)op
)

= (c× d)−1
(

Relvop(F)(Sop)
)

by Lemma 4.2 (4).

Hence:

T = (R ∩ Sop)

⊆ (c× d)−1
(

Relv(F)(R)
)

∩ (c× d)−1
(

Relvop(F)(Sop)
)

= (c× d)−1
(

Relv(F)(R) ∩ Relvop(F)(Sop)
)

⊆ (c× d)−1
(

Rel(F)(T)
)

.

The last step uses the condition of the theorem. �

Notice that the condition in this theorem can be formulated because we take
an order v on a functor as primitive (and not the associated relator or relation
lifting). This allows us to change the order (by taking the opposite vop) and
consider the associated lifting.

Example 6.3 In this example we show that the first ordering v1 for the list
functor L in Example 2.2 satisfies the condition of the previous theorem.

Assume two sequences u = 〈x0, . . . , xn−1〉 and v = 〈y0, . . . , ym−1〉 satisfy
(u, v) ∈ Relv1

(L)(R1) ∩ Relvop

1
(L)(R2). This means that there are strictly

monotone functions

ϕ : {0, 1, . . . , n− 1} → {0, 1, . . . ,m− 1},

ψ : {0, 1, . . . ,m− 1} → {0, 1, . . . , n− 1}

with R1(xi, yϕ(i)) and R2(xψ(j), yj). But this can only happen if n = m and
ϕ = ψ = id. Hence (R1 ∩R2)(xi, yi), so that (u, v) ∈ Rel(L)(R1 ∩R2).

19

Example 6.4 For (labeled) transition systems it is not the case that two-way
similarity is the same as bisimilarity. Here is a simple (unlabeled) example.

1
����

��
��<

<<
< a

��
2
��

3 b

��
4 c

The following is a simulation from left to right:

R = {(1, a), (2, b), (3, b), (4, c)}.

Indeed, R(x, y) and x −→ x′ implies y −→ y′ for some y′ with R(x′, y′).

And a simulation from right to left is:

S = {(a, 1), (b, 2), (c, 4)}.

This shows that 1 ∼ a. But we do not have 1↔ a.

7 Dcpo structure by finality

In Example 5.7 we have seen that similarity on the final coalgebra of sequences
coincides with the prefix order. The latter happens to provide a dcpo struc-
ture: every directed subset has a join. Such a dcpo structure can be used
in a denotational semantics of a programming language, to give meaning to
constructs like loops or recursion.

In this section we shall see that this dcpo structure results from a distributive
law between the sequence functor and the free dcpo monad on preorders.
Moreover, the presence of such a distributive law is equivalent to requiring
that the functor Relv(F) preserves dcpos. We begin with some rudimentary
facts about dcpos.

We write Dcpo for the category of directed complete preorders. It comes
with a forgetful functor U : Dcpo→ PreOrd. This functor has a left adjoint,
for which we write D. It maps a preorder to its directed downsets, ordered
by inclusion. The join in D(X) of a directed collection (Ui)i∈I of directed
downsets Ui is then simply their union

⋃

i∈I Ui. The adjunction induces a
monad on PreOrd, for which we shall also write D, with:

unit: ηX : X → D(X) x 7−→ ↓x

multiplication: µX : D2(X)→ D(X) (Ui)i∈I 7−→
⋃

i∈I Ui.

20

The following result is standard.

Lemma 7.1 For a preorder X the following are equivalent.

(1) X is a dcpo;
(2) X carries an (Eilenberg-Moore) algebra structure for the monad D;
(3) the unit ηX : X → D(X) has a left adjoint.

The structure map in (2) and (3) is of course the join operation

∨

: D(X) −→ X.

Successive left adjoints to the unit are studied in [11] and describe continuity
and algebraicity in the dcpo.

The next result is (almost) an instance of [21, Theorem 7.1] about the equiv-
alence of liftings to algebras of the monad D, namely dcpos, and distributive
laws. For the reader’s convenience, we include the main steps of the proof.

Lemma 7.2 A functor F with stable order v preserves dcpos if and only if
there is a distributive law

PreOrd
D //

F
��

PreOrd

F
��

PreOrd D
//

τ 19lll lll

PreOrd

(i.e., natural transformation) consisting of monotone functions τX : D(FX)→
F (D(X)), where D(FX) carries the inclusion order ⊆ on the completion
D(FX) = D(FX,Relv(F)(≤)), and F (D(X)) carries the lifting Relv(F)(⊆)
of the inclusion order ⊆ on D(X) = D(X,≤). Such a distributive law is re-
quired to make the following two diagrams commute.

F (X)
ηF (X) //

F (ηX) &&MMMMMMMMMMM
D(F (X))

τX
��

D2(F (X))
D(τX)//

µF (X)
��

D(F (D(X)))
τD(X) //F (D2(X))

F (µX)
��

F (D(X)) D(F (X)) τX
//F (D(X))

Proof. Suppose that F preserves dcpos and let (X,≤X) be a preorder. As in
the statement of the theorem, we abuse notation by simply writing FX for
(FX,Relv(F)(≤X)), and similarly for maps.

By assumption, the preorder FDX is a dcpo. Let τX : DFX → FDX be the
adjoint transpose of FηX : FX → FDX, so that τX ◦ ηFX = FηX . We claim
that τ thus defined is the desired distributive law.

21

For the other direction, suppose we have a distributive law τ and that (X,≤X)
is a dcpo. Let

∨

FX
: DFX → FX be the composite

DFX
τX //FDX

F
(

∨

X

)

//FX

It is easy to see that it satisfies the laws for Eilenberg-Moore algebras. �

The next result also follows from [21]. It says that the final coalgebra forms
a final τ -bialgebra (in the category PreOrd), for the distributive law τ . This
means that the coalgebra and supremum structures are compatible, in a suit-
able sense.

Theorem 7.3 Let F : Sets → Sets with a stable order v preserve dcpos. If
F has a final coalgebra, then it forms with its similarity order a dcpo.

Proof. Let ζ : Z
∼=−→ F (Z) be the final coalgebra. We may assume a distribu-

tive law τ , like in the previous result. We then define an (Eilenberg-Moore)
algebra structure

∨

: D(Z)→ Z in the standard way by finality, as in:

F (D(Z))
F (
∨

)
//F (Z)

D(F (Z))

τZ

OO

D(Z)

D(ζ)
OO

∨

//Z

∼= ζ

OO

By Proposition 5.4
∨

is monotone. It is an Eilenberg-Moore algebra. �

The dcpo structure on sequences in Example 5.7 indeed follows from Theo-
rem 7.3. Soon, we will show that all of our ordered functors in Poly (assuming
the constant functors involve dcpos) preserve dcpos, by explicitly exhibiting a
distributive law for each. Here, we confirm directly that S(X) = 1 + (A×X)
preserves dcpos.

Let (X,≤X) be a dcpo and let D ⊆ 1 + (A × X) be directed with respect
to Relv(F)(≤X). If D ⊆ 1, then clearly

∨

D = ∗. Otherwise, since ∗ is a

bottom element for Relv(F)(≤X), we have
∨

D =
∨

(

D ∩ (A × X)
)

. The

order Relv(F)(≤X) restricted to A×X is given by

(a, x) Relv (F)(≤X)(b, y) ⇐⇒ a = b and x ≤X y,

22

i.e., the componentwise order for A×−. Because D is directed, one can write

D ∩ (A×X) = {(a, x) | x ∈ D′}

for some a ∈ A and directed set D′ ⊆ X. Hence,

∨

D = (a,
∨

D′).

Actually, the definition via finality of the join for sequences occurs already
in [8], but here we put this definition in a wider context via distributive laws.

We consider another such example.

Example 7.4 We fix a set V , and think of its elements as variables. We use
V in the functor TV : Sets→ Sets given by

TV (X) = 1 +
(

V ? × V ×X?

)

We shall write the final coalgebra as ζ : BT
∼=−→ 1+(V ?×V ×BT?). Its elements

will be considered as (abstract) Böhm trees, see [3]. For A ∈ BT we can write:

ζ(A) = ∗ or ζ(A) =







λx1 . . . xn. y

uu
uu

uu
JJJJJJ

ζ(A1) · · · ζ(Am)







where, on the right, ζ(A) = (〈x1, . . . , xn〉, y, 〈A1, . . . , Am〉). The ‘λ’ is just
syntactic sugar, used to suggest the analogy with the standard notation for
Böhm trees [3]. The elements of BT are thus finitely branching, possibly infinite
rooted trees, with labels of the form λx1 . . . xn. y, for variables xi, y ∈ V .

The order considered on Böhm trees as formulated in [3, §10.2] is:

A ⊆ B ⇐⇒ A results from B by cutting of some subtrees

This description is fairly informal. The question is how to make it precise,
via an order on the functor TV . Two possible orders come to mind: the flat
order from Example 2.2 (2) or the precise order v1 on the list functor from
Example 2.2 (3). The following illustrations from [3, §10.2] help.

λx. x

��
�� --

- ⊆ λx. x

��
� --

- λx. x

��
��))

))
6⊆ λx. x

��
��))

))

x x x

x

These pictures show that “cutting off subtrees” should be interpreted as: replac-
ing a node by ∗. Thus, the order v that we consider on the functor TV is simply
the flat order, like for sequences in Example 2.2 (2): u v v iff u 6= ∗ ⇒ u = v.

23

The induced similarity order . on BT is then the above order ⊆. The previous
theorem allows us to conclude that it is a dcpo.

Other examples can be readily constructed for polynomial functors Poly, de-
fined in Section 4, provided that the constant functors X 7→ A are restricted to
dcpos A. It is sufficient, of course, just to confirm that these functors with order
preserve dcpos. Nonetheless, we give here the explicit associated distributive
laws, which can be found via the proof of Lemma 7.2. The distributive laws
are constructed by induction on the structure of the polynomial functor (and
its associated order) as follows.

• For any dcpo (A,≤A), the constant functor FX = A with order vX=≤A
has a distributive law given by

∨

: DA → A. In particular, this applies
when we take ≤A to be =A.
• For the identity functor FX = X with the discrete order, the identity

transformation DX → DX is a distributive law.
• Suppose that functors F1 and F2 have distributive laws τ1 and τ2, and define

an order v on F1 × F2 by taking the orders on F1 and F2 component-wise.
Then

((τ1)X ◦ Dπ1, (τ2)X ◦ Dπ2) : D(F1 × F2)X → (F1 × F2)DX

is a distributive law.
• Let F have distributive law τ and for each a ∈ A, let eva : FAX → FX

denote evaluation at a, i.e., eva(f) = f(a). Then

DFAX −→ FADX

S 7−→ λa. τX(
∐

eva

S)

is a distributive law for FA.
• Let F1 and F2 be as above, and let v be the disjoint order for F1+F2. Then,

D(F1 + F2)X −→ (F1 + F2)DX

S 7−→







(τ1)XS if S ⊆ F1X

(τ2)XS else.

defines a distributive law for F1 + F2 with the given order.
• For the concatenation order v′

X given by

a v′
X b iff a vX b or (a ∈ F1X and b ∈ F2X),

24

there is a related distributive law given by

D(F1 + F2)X −→ (F1 + F2)DX

S 7−→







(τ1)XS if S ⊆ F1X

(τ2)X(S ∩ F2X) else.

The functors L ◦ F and B (with either of their respective orders) do not
preserve dcpos. (This does not contradict Example 7.4 — there, the ordering
is the flat ordering, so it does not involve our orders for L in Section 4.) The
powerset functor has no final coalgebra, so Theorem 7.3 does not apply to
it. Bounded versions of the powerset functor (finite powerset, etc.) do not
preserve dcpos.

8 Terms and observations

The situation that we shall investigate in this section is described in Figure 1.
It is obtained by repeated application of a functor F to the initial ∅ and
final 1 objects. What we have not included is that if F carries an order, all
the objects in this diagram carry a derived order. Some of the arrows in this
figure only exist if F satisfies certain properties. The aim of the figure is to
give an overview of the structure that will be analysed below.

A

��

F (A)
∼=

initial
algebra

oo

∅

��

// · · · //

��

F n(∅)
F n(?F (∅)) //

F n(?1)
��

F n+1(∅)

��

//

κn+1
//

· · ·

colimitrrrrr

99rrrrr

1
>

AA· · ·oo
> 99F

n(1)oo
>

F n(⊥1)

44F
n+1(1)

F n(!F (1))oo
>

77

>
ιn+1

55

· · ·oo

colimit�����

BB�������������

Z

limitLLLLL

eeLLLLL

πn+1

ee

∼=

final
coalgebra

//F (Z)

Fig. 1. Terms F
n(∅) and observations F

n(1) with their colimit and limit

Hereafter, we will include subscripts on ! and ? only when necessary to reduce
ambiguity.

25

8.1 Ordering terms

For an endofunctor F the inhabitants of the sets F n(∅), for n ∈ N, are usually
called terms. There are obvious inclusion maps F n(?F (∅)) : F n(∅) → F n+1(∅).
Zooming in on the upper row in Figure 1, we get for m ≤ n the following
commuting diagrams.

Fm(∅)
Fm(?F (∅)) //

Fm(?Fn−m(∅))

44Fm+1(∅)
Fm+1(?F (∅)) // · · ·

F n−1(?F (∅)) //F n(∅) (2)

In this section we assume that our functor F carries a stable order v. It
induces for each n ∈ N an order vn on the set F n(∅) of terms, namely via:

v0
def
= =∅ and vn+1

def
= Relv(F)(vn).

Each vn is then a preorder by Lemma 5.5.

Next we assume that our functor is pointed, i.e., comes with a point ⊥ : 1⇒ F

such that each ⊥X is a bottom element 2 for the order vX on F (X). We note
that a natural transformation 1⇒ F corresponds to an element in F (∅), as is
demanded in [1].

Given such a point ⊥, we define, for n ≥ 1, ⊥n ∈ F
n(∅) to be the distinguished

bottom element ⊥Fn−1(∅) for v.

Lemma 8.1 (1) Each function F n(?) : F n(∅)→ F n+1(∅) preserves ⊥n, and
is monotone, i.e., satisfies:

vn ⊆
(

F n(?)× F n(?)
)−1

(vn+1).

(2) Each ⊥n is a bottom element for vn.

Proof. (1) Preservation of⊥n is immediate from the naturality of⊥ : 1⇒ F .
Preservation of the order is proved by induction on n. If n = 0, then the
claim is trivially true. For the inductive case, suppose that

F n(?) : (F n(∅),vn)→ (F n+1(∅),vn+1)

is monotone. Then

F n+1(?) : (F n+1(∅),Relv(F)(vn))→ (F n+2(∅),Relv(F)(vn+1))

2 We do not assume that ⊥X is the only bottom element for the preorder vX . It
is merely a distinguished bottom.

26

is monotone by definition of v. Of course, vn+1 = Relv(F)(vn) and
vn+2 = Relv(F)(vn+1), so the result is proved.

(2) By assumption, ⊥n is a bottom element for v. Because each vn is reflex-
ive, so is Rel(F)(vn). Hence for t ∈ F n(∅) we get ⊥n v t Rel(F)(vn−1)
t v t, and so ⊥n vn t. �

Let, like in Figure 1, A be the colimit in Sets of the ω-chain,

A

∅
?

//

κ0

22dd F (∅)
F (?)

//
κ1

33ffffffffffffffffffffffffffffff
F 2(∅)

F 2(?)
////

κ2

66nnnnnnnnnnnnnn
· · ·

with coprojections κn satisfying κn+1 ◦ F
n(?) = κn. We can then order the

elements of the colimit in the following standard manner 3 . For x, y ∈ A,

x ≤ y
def
⇐⇒ ∃m,n ∈ N.∃x′ ∈ Fm(∅).∃y′ ∈ F n(∅).

x = κmx
′ ∧ y = κny

′ ∧ m ≤ n ∧

F n−1(?) ◦ . . . ◦ Fm(?)(x′) vn y
′.

Then it is easy to see that (A,≤) is the colimit of the ω-chain (F n(∅),vn) in
PreOrd.

Further, since ⊥
def
= κ1(⊥1) ∈ A is the bottom element with respect to this

order we even get a colimit in the category PreOrd⊥ of preorders with bottom
element (preserved by homomorphisms). For this to work we need to drop the
empty set ∅ as starting point of the ω-chain.

A standard trick in this setting is to consider the cocone F n+1(∅)
F (κn)
−→ F (A)

in PreOrd⊥, where F (A) is equipped with the order Relv(F)(≤) and bottom
element ⊥A. The fact that A is a colimit yields a unique monotone, bottom-
preserving map α : A→ F (A) with α ◦ κn+1 = F (κn). It is well-known (going
back to [19]) that if F preserves colimits of ω-chains, then α is an isomorphism

and its inverse α−1 : F (A)
∼=−→ A is the initial algebra “of terms” for F . Note

that at this stage we only know for α, and not for the initial algebra α−1, that
it is monotone.

8.2 Ordering observations

In this section we shift our attention from the sets F n(∅) of terms to the sets
F n(1) of observations in Figure 1. Between these sets of observations there

3 Using that the forgetful functor PreOrd→ Sets creates colimits.

27

are obvious maps F n(!) : F n+1(1) → F n(1), satisfying the analogue of (2) in
Section 8.1. Moreover, there are maps F n(?1) : F n(∅)→ F n(1) between terms
and observations, making the following diagram commute.

F n(∅)
F n(?F (∅)) //

F n(?1)
��

F n+1(∅)

F n+1(?1)
��

F n(1) F n+1(1)
F n(!)

oo

Each set of observations F n(1) carries a preorder vn with a bottom element
⊥n, via the definitions:

vn
def
= Relv(F)n(=1) and ⊥n

def
=







∗ if n = 0

⊥Fn−1(1) otherwise

We thus use ∗ for the sole element of the singleton set 1. It is easy to see
that ⊥n is the bottom element of 〈F n(1),vn〉. Notice that we overload the
notation vn, ⊥n for the preorder and bottom element on terms F n(∅) and on
observations F n(1).

Lemma 8.2 (1) Each F n(!) : F n+1(1)→ F n(1) is a map in PreOrd⊥, that
is, it preserves vn and ⊥n.

(2) These maps F n(!) : F n+1(1)→ F n(1) have a left adjoint

F n(⊥1) : F n(1)→ F n+1(1)

with F n(!) ◦ F n(⊥1) = id.
(3) Each ⊥n is a bottom element for vn.
(4) Each F n(?) : F n(∅)→ F n(1) preserves vn and (if n ≥ 1) also ⊥n.

Proof. (1) Preservation of bottom elements is easy, and preservation of the
order follows by induction, much like in the proof of Lemma 8.1 (1).

(2) We first note that each F n(⊥1) is indeed a map in PreOrd⊥. That this
holds for n = 0 is trivial. For the inductive step: F n+1(⊥1) preserves ⊥n+1

by naturality of ⊥ : 1 ⇒ F and definition of ⊥n+1. Monotonicity follows
the proof of Lemma 8.1 (1). Note also that the identity F n(!) ◦ F n(⊥1) =
id is trivial.

To prove the adjunction, we proceed by induction on n, with the claim
obvious for n = 0. Suppose that the claim holds for n. The adjunction
F n(⊥1) a F

n(!) can be explicitly stated

(id× F n(!))−1(vn) = (F n(⊥1)× id)−1(vn+1).

We will show the same equation holds for n+ 1. Here, we use stability of

28

the order.

(id× F n+1(!))−1(vn+1) = (id× F n+1(!))−1Relv(F)(vn)

= Relv(F)
(

(id× F n!)−1(vn)
)

(IH)
= Relv(F)

(

(F n(⊥1)× id)−1(vn+1)
)

= (F n+1(⊥1)× id)−1
(

Relv(F)(vn+1)
)

= (F n+1(⊥1)× id)−1(vn+2).

(3) The same proof as Lemma 8.1 (2).
(4) Recall from Lemma 5.5 that F restricts to a functor PreOrd→ PreOrd.

Clearly, ? : (∅,=∅) → (1,=1) is a map of preorders. Therefore F n(?) is
a map of preorders from F n(∅) with order vn = Relv(F)n(=∅) to F n(1)
with order vn = Relv(F)n(=1). Preservation of the bottom elements (for
n ≥ 1) is trivial. �

We shall write Z for the limit in Sets of the ω-chain 1← F (1)← F 2(1)← · · · ,
with projections πn : Z → F n(1) satisfying F n(!) ◦ πn+1 = πn, like in Figure 1.
This limit can also be understood as a limit in PreOrd⊥ via the following
order and bottom element on Z.

x ≤ y
def
⇐⇒ ∀n ∈ N. πnx vn πny and ⊥

def
= 〈⊥n〉n∈N. (3)

The object 4 〈F (Z),Relv(F)(≤),⊥Z〉 in PreOrd⊥ carries a cone structure
with maps F (πn) : F (Z) → F n+1(1) and ! : F (Z) → 1. It yields a (mono-
tone and bottom-preserving) mediating map ξ : F (Z) → Z in PreOrd⊥. If
F : Sets → Sets preserves limits of ω-cochains, ξ is an isomorphism, and
ζ = ξ−1 a final coalgebra. Like for algebras, we do not know yet that ζ is
monotone and bottom-preserving. It will be shown at the end of the next
section, when we give sufficient conditions that ≤ and . coincide.

The polynomial functors Poly preserve limits of ω-cochains.

Assuming finality we obtain for each n ∈ N a coalgebra homomorphism
ιn : F n(1)→ Z in:

F n+1(1)
F (ιn) //F (Z)

F n(1)

F n(⊥1)
OO

ιn
//Z

∼= ζ

OO

4 Note ⊥Z is the bottom element of Relv(F)(≤) and not the bottom element of
Relv(F)(.). That is, ⊥Z = ⊥(Z,≤) in this section.

29

By uniqueness we then get ιn+1 ◦ F
n(⊥1) = ιn. This allows us to prove the

following alternative description.

ι0 = ζ−1 ◦ ⊥Z and ιn+1 = ζ−1 ◦ F (ιn). (4)

Note that each ιn is monotone and bottom-preserving, as the composition of
monotone, bottom-preserving maps. The main result about these ιn’s is the
following.

Lemma 8.3 The limit projections πn : Z → F n(1) have ιn as left adjoint with
πn ◦ ιn = idFn(1).

Proof. We first prove the equation πn ◦ ιn = id, by induction on n, using the
formulation (4). The base case n = 0 is trivial. And:

πn+1 ◦ ιn+1 = πn+1 ◦ ζ
−1 ◦ F (ιn) = F (πn) ◦ F (ιn) = F (πn ◦ ιn)

(IH)
= id.

This equation can be used to prove the ⊆ part of the claimed adjunction
(ιn× id)−1(≤) = (id×πn)

−1(vn). The proof is by induction, and the base case
is again trivial. The induction step uses that πn+1 is monotone:

(ιn+1 × id)−1(≤) ⊆ (ιn+1 × id)−1(πn+1 × πn+1)
−1(vn+1)

= ((πn+1 ◦ ιn+1)× πn+1)
−1(vn+1)

= (id× πn+1)
−1(vn+1).

The proof of the reverse inclusion uses that ζ−1 : F (Z)→ Z is monotone (by
construction). Specifically, it means that (ζ(x), ζ(y)) ∈ Relv(F)(≤)⇒ x ≤ y.
This is used in the last (inclusion) step in:

(id× πn+1)
−1(vn+1)

= (id× πn+1)
−1Relv(F)(vn)

= (id× ζ)−1(id× F (πn))
−1Relv(F)(vn)

= (id× ζ)−1Relv(F)
(

(id× πn)
−1(vn)

)

IH
⊆ (id× ζ)−1Relv(F)

(

(ιn × id)−1(≤)
)

= (id× ζ)−1(F (ιn)× id)−1Relv(F)(≤)

= (ιn+1 × id)−1(ζ × ζ)−1Relv(F)(≤)

⊆ (ιn+1 × id)−1(≤). �

30

9 Similarity . as an ω-limit

Throughout this section, we assume that F : Sets→ Sets preserves limits of
ω-cochains, so the carrier of the final coalgebra (Z, ζ) is given as the limit of
the ω-cochain

1 F1!oo F 21F !oo . . .oo (5)

from Subsection 8.2. There we have seen that Z with order ≤ and bottom ⊥

is the limit of 1 F1!oo F 21F !oo . . .oo in PreOrd⊥. In this section, we will

give sufficient conditions that . = ≤ .

Remark 9.1 In fact, in what follows, we do not make any especial use of the

bottom element ⊥. The same arguments would show that . = ≤ in PreOrd,

without alteration. Since we’re interested in algebraic cpos hereafter, we do the
proofs in PreOrd⊥ for convenience.

First, we show that the greatest simulation . is always contained in ≤. For
this, we do not require any assumptions aside from those listed above.

Lemma 9.2 . ⊆ ≤ .

Proof. Recall ≤ =
⋂

n∈N(πn × πn)
−1 vn . We will show that, for each n, we

have . ⊆ (πn × πn)
−1 vn . We proceed by induction, with the base case ob-

vious.

. = (ζ × ζ)−1Relv(F)(.) by Lemma 5.1
IH
⊆ (ζ × ζ)−1Relv(F) ((πn × πn)

−1 vn)

⊆ (ζ × ζ)−1(Fπn × Fπn)
−1Relv(F)(vn)

= (πn+1 × πn+1)
−1Relv(F)(vn)

= (πn+1 × πn+1)
−1 vn+1 . �

Thus, to complete the proof that ≤ = . , we must show ≤ ⊆ . . Since .

is the greatest simulation, it suffices to show that ≤ is a simulation, too. For
this, we impose an additional condition on the functor F .

Definition 9.3 We say that a functor F with order v preserves intersections
of reflexive relations if, given a set 〈Ri | i ∈ I〉 of reflexive relations over X
and Y , we have

⋂

i∈I

Relv(F)(Ri) = Relv(F)(
⋂

i∈I

Ri).

The inclusion ⊇ holds trivially, so F preserves intersections of reflexive rela-
tions just in case

⋂

i∈I Relv(F)(Ri) ⊆ Relv(F)(
⋂

i∈I Ri) above. This property

31

is used at a critical step in the following proof that ≤ ⊆ . .

The polynomial functors Poly defined in Section 4 preserve intersections of re-
flexive relations. In fact, with the exception of the order v′

F1+F2
, these functors

preserve intersections of arbitrary (not just reflexive) relations.

Theorem 9.4 Suppose that F has a stable order and preserves intersections

of reflexive relations. Then . = ≤ .

Proof. It suffices to show that ≤ is a simulation on the final coalgebra, i.e.,

that ≤ ⊆ (ζ × ζ)−1Relv(F)(≤) .

≤ =
⋂

n∈N

(πn × πn)
−1 vn

=
⋂

n∈N

(πn+1 × πn+1)
−1 vn+1

=
⋂

n∈N

(Fπn ◦ ζ × Fπn ◦ ζ)
−1Relv(F)(vn)

=
⋂

n∈N

(ζ × ζ)−1(Fπn × Fπn)
−1Relv(F)(vn)

=
⋂

n∈N

(ζ × ζ)−1Relv(F) ((πn × πn)
−1 vn)

= (ζ × ζ)−1 ⋂

n∈N

Relv(F) ((πn × πn)
−1 vn)

= (ζ × ζ)−1Relv(F)

(

⋂

n∈N

(πn × πn)
−1 vn

)

= (ζ × ζ)−1Relv(F)(≤). �

In Section 8.2, we saw that (Z,≤,⊥) is the limit of the ω-cochain (5), although
we could not prove at that point (even assuming that F preserves limits of
ω-cochains) that the structure map ζ : Z → FZ is monotone. Of course, ζ
is monotone with respect to ., and hence, as corollary to Theorem 9.4, it is
monotone with respect to ≤.

10 Algebraic cpo structure on final coalgebras

In this section, we will investigate sufficient conditions that the final coalgebra
(Z, ζ), together with similarity order . and bottom element ⊥ = 〈⊥n〉 forms
an algebraic cpo. We begin by reviewing some terminology and stating the
assumptions which we impose hereafter.

Let Cpo denote the category of complete pre-orders (directed complete pre-
orders with bottom) and continuous, bottom-preserving maps. Note that the

32

final coalgebra (Z, ζ) with similarity order . and bottom element ζ−1(⊥Z) is
a cpo—in presence of a distributive law.

Definition 10.1 Let (X,≤X) be a cpo. An element x of X is finite if, for
every directed set D ⊆ X, we have

x ≤X
⊔

D ⇒ ∃d ∈ D. x ≤X d.

Let K : Cpo → PreOrd⊥ be the operator taking a cpo (X,≤X) to its sub-
order KX of finite elements.

Definition 10.2 A cpo (X,≤X) is algebraic if the following hold.

(1) For each x ∈ X, the set {d ∈ KX | d ≤X x} is directed.
(2) Furthermore, x =

⊔

{d ∈ KX | d ≤X x} (up to isomorphism).

Note that by (1), if (X,≤X) is an algebraic cpo, z ∈ X with x1, x2 < z both
finite, then there is a finite y < z such that x1, x2 < y.

The following lemma gives a sufficient condition that a morphism l : X → Y

between algebraic cpos X and Y preserves the finite elements of X. We use
it in constructing a colimit of KF n1 hereafter, and also in showing that the
constructed colimit consists of finite elements of the final coalgebra Z.

Lemma 10.3 Let (X,≤X) and (Y,≤Y) be algebraic cpos and let l : X → Y ,
r : Y → X be monotone maps such that l a r.

(1) If r is continuous then l preserves finite elements, i.e., restricts to a map
KX → KY , as in the commutative diagram below.

X
l))

Y
r

ii

KX
?�

OO

l
//KY

?�

OO

(2) If r ◦ l = id, then l reflects finite elements, i.e., if l(x) is finite (in Y),
then so is x (in X).

Proof. We prove each claim in turn.

(1) Let x ∈ X be finite and we will show that lx is also finite. Suppose that
lx ≤Y

⊔

D for some directed D ⊆ Y . Then x ≤X r
⊔

D =
⊔

∐

r
D.

Consequently, there is a y ∈ D such that x ≤X ry and hence lx ≤Y y.
(2) Suppose now that r ◦ l = id and x ∈ X such that l(x) is finite and we

will show that x is finite. Let D ⊆ X be directed and x ≤X
⊔

D. We must
show that there is some d ∈ D such that x ≤X d. Then l(x) ≤Y l(

⊔

D).

33

Since l is a left adjoint, it preserves colimits and hence is continuous.
Thus, we have l(x) ≤Y

⊔∐

lD and hence there is a d ∈ D such that
l(x) ≤Y l(d). Hence, x = (r ◦ l)(x) ≤X (r ◦ l)(d) = d. �

Hereafter, we assume that the pointed functor F with stable order v preserves
dcpos (as in Definition 5.6), so that the final coalgebra (Z, ζ) together with
. forms a dcpo, as in Section 7. We also assume that F preserves algebraic
cpos. In fact, we use this assumption only to ensure that each preorder in the
cochain 1 ← F1 ← F 21 ← · · · is an algebraic cpo (with order vn), so we
could have simply assumed the algebraicity of each F n1 instead. In any case,
the polynomial functors Poly from Section 4 all preserve algebraic cpos, with
some caveats. The constant functors X 7→ A preserve algebraic cpos iff A is
an algebraic cpo. Also, the disjoint order on F1 + F2 must be altered so that
it has a bottom element, either by introducing a new ⊥ or by identifying ⊥F1

and ⊥F2
.

We also continue our assumption from Section 9 that F preserves intersections
of reflexive relations. Thus, the carrier Z of the final coalgebra with similarity
order . is the limit in PreOrd⊥ of the cochain 1 ← F1 ← F 21 ← · · ·
Note that F n(!) is trivially continuous for n = 0, and is continuous for n > 0
by the assumption that F preserves dcpos. Hence, since the forgetful functor
Dcpo→ PreOrd⊥ creates limits, (Z,.) is also the limit of the same chain in
Dcpo. In particular, this entails that the projections πn : Z → F n1 and both
ζ and ζ−1 are continuous.

Summing up, we assume

(1) F has stable order v and bottom ⊥ : 1⇒ F ;
(2) F preserves dcpos;
(3) F preserves algebraic cpos;
(4) F preserves intersections of reflexive relations;
(5) F preserves limits of ω-cochains.

The polynomial functors Poly satisfy these conditions, given that the constant
functors involve algebraic cpos and the functor has a bottom element.

Recall that ⊥1 is the bottom element in the preorder (F1,v1). For each n,
F n(⊥1) is an injection from F n1 to F n+11. Intuitively, the F n1’s are finite
approximations of the final coalgebra Z and F n(⊥1) is the “inclusion” of the
nth approximation into the (n+1)st. The following lemma ensures that these
inclusions preserve finite elements. We aim to show that the union of the finite
elements appearing in the cochain (5) in Section 9 is exactly the set KZ of
finite elements of the final coalgebra (Z, ζ).

Lemma 10.4 For each n, the function F n(⊥1) preserves and reflects finite
elements, so that F n(⊥1) restricts to a function KF n1→ KF n+11.

34

Proof. We wish to apply Lemma 10.3. By Lemma 8.2, F n(!) is right adjoint
to F n(⊥1) with F n(!) ◦ F n(⊥1) = id and is continuous as noted above. �

Let AK denote the colimit (in PreOrd⊥) of the ω-chain

K1
⊥1

//KF1
F⊥1

//KF 21
F 2⊥1

// · · · (6)

with colimiting cocone 〈jn : KF n1 → AK〉n∈N. In [1], it was shown that, if
F preserves colimits along ω-cochains, then the initial algebra is given as the
colimit A of

1
⊥1

//F1
F⊥1

//F 21
F 2⊥1

// · · · ,

as shown in Figure 1. In this case, one can show that AK is the set of finite
elements of the initial algebra A (ignoring the technicality that A is not a cpo
– AK is not literally KA, since the latter is not defined). This observation
explains our basic strategy. We will show that the set KZ of finite elements
for the final coalgebra is essentially (up to two-way similarity) AK – that
is, (assuming F preserves such colimits) the set of finite elements for the
initial algebra. We do not, however, need the assumption that F preserves
these colimits in the following. We include this digression here merely for
motivational purposes.

First, we construct an injection AK → Z. In the case that A is initial, this
map is the restriction of the unique (algebra and coalgebra) homomorphism
from the initial algebra into the final coalgebra. This injection arises as the
mediating map for the cocone below.

1

ι0

&&

⊥1

//F1

ι1
%%

F⊥1

//F 21

ι2
##

F 2⊥1

// · · · //Z

K1
?�

OO

⊥1 //

j0

88KF1
?�

OO

F⊥1//

j1
88KF 21

?�

OO

F 2⊥1 //

j2
::· · · //AK

?�

m

OO

We proved that ιn : F n1⇒ Z formed a cocone in Section 8.2, and the squares
commute by Lemma 10.4. The ιn’s are compositions of monotone, bottom-
preserving maps by (4) in Section 8, so this cocone takes place in PreOrd⊥.
This yields a mediating map m : AK → Z, as promised. Finally, each ιn is
injective (by Lemma 8.3), so m is also injective.

As we will see, the image of this injection is exactly KZ. The next lemma
proves half of this claim.

35

Lemma 10.5 For each x ∈ AK, the element m(x) of Z is finite, i.e., Im(m) ⊆
KZ.

Proof. Let x ∈ AK . Then there is an n and x′ ∈ KF n1 such that jn(x
′) = x.

Since m ◦ jn = ιn, it suffices to show that ιn(x
′) is finite, i.e., that ιn preserves

finite elements. For this, we apply Lemma 10.3 (1). By Lemma 8.3, ιn has
right adjoint πn. Moreover, πn is continuous, as mentioned above. �

We turn our attention to proving the other inclusion (up to two-way similar-
ity). To do this, we first construct, for each z ∈ Z, a chain in Im(m) with join
z. From this, the result easily follows.

Lemma 10.6 Let z ∈ Z. The sequence 〈(ιn ◦ πn)(z) | n ∈ N〉 is a .-chain.

Proof. We use the fact that F n(!) ◦ πn+1 = πn as starting point to derive the
required result:

πnz vn (F n(!) ◦ πn+1)z
(Lemma 8.2 (2))

(F n(⊥1) ◦ πn)z vn+1 πn+1z
(Monotonicity)

(ιn+1 ◦ F
n(⊥1) ◦ πn)z . (ιn+1 ◦ πn+1)z

(ιn+1 ◦ F
n(⊥1) = ιn)

(ιn ◦ πn)z . (ιn+1 ◦ πn+1)z

�

The following theorem shows that each z ∈ Z is determined by the chain
constructed above, in the usual algebraic sense. In other words: each z is the
join of the chain

(ι0 ◦ π0)(z) . (ι1 ◦ π1)(z) . (ι2 ◦ π2)(z)

Of course, in a complete pre-order, such joins are determined only up to iso-

morphism, i.e., two-way similarity. (In the case that ∼ = ↔ = =Z , as in

Theorem 6.2, then Z is a complete partial order and the stronger result at-
tains.)

Lemma 10.7 For each z ∈ Z, we have z ∼
⊔

n∈N(ιn ◦ πn)(z).

Proof. Clearly, πnz vn πnz, and so (ιn ◦ πn)(z) ≤ z, by ιn a πn. Since ≤ = .

by Theorem 9.4 we get (ιn ◦ πn)(z) . z, and thus
⊔

n∈N(ιn ◦ πn)(z) . z.
For the other direction, we note that, for every n, we have (ιn ◦ πn)(z) .
⊔

n∈N(ιn ◦ πn)(z). Hence, for every n,

πn(z) vn πn
(

⊔

n∈N(ιn ◦ πn)(z)
)

.

In other words, (z,
⊔

n∈N(ιn ◦ πn)(z)) ∈
⋂

n∈N(πn × πn)
−1(vn) = ≤ . We apply

36

Theorem 9.4 (≤ = .) completes the proof. �

The following corollary expresses the relationship between KZ and Im(m) in
a general case. If bisimilarity is not the same as two-way similarity, then the
best one can do is: each finite element of z is two-way similar to an element
of Im(m). If the ↔ and ∼ are equal relations, then one can do better. In that
case, since Z is final, we have Im(m) = KZ.

Corollary 10.8 Im(m : AK → Z) = KZ up to two-way similarity. In other
words,

{x | ∃x′ ∈ Im(m). x ∼ x′} = KZ.

Proof. We already have ⊆ from Lemma 10.5. Thus, we wish to show, for
each z ∈ KZ, there is an n ∈ N and x ∈ KF n1 such that z ∼ ιnx. Let finite
z ∈ Z be given. Since z .

⊔

(ιn ◦ πn)(z), we see that z . (ιn ◦ πn)(z) for
some n. But, by the adjunction ιn a πn, we also have (ιn ◦ πn)(z) . z and
hence z ∼ (ιn ◦ πn)(z). Thus, (ιn ◦ πn)(z) is finite and since ιn reflects finite
elements (Lemma 10.3 (2)), so is πn(z). �

We have now characterized KZ in terms of the finite elements of the finite
approximations F n1. We use that characterization to show that the set of
finite elements below a given element of Z is directed. This is the last “big”
step in showing that (Z,.) is an algebraic cpo.

Lemma 10.9 For every z ∈ Z, the set {v ∈ KZ | v . z} is directed.

Proof. Let y and y′ be finite elements of Z such that y, y′ . z. Without loss
of generality, we may assume that y and y′ are in Im(m). Then there are k, k′

such that y ∼ (ιk ◦ πk)(y) and y′ ∼ (ιk′ ◦ πk′)(y
′) and such that πky and πk′y

′

are finite in F k1 and F k′1, respectively (ιk and ιk′ reflect finite elements).

Note that, for all n ∈ N and x ∈ Z, if (ιn ◦ πn)(x) ∼ x, then

x . (ιn ◦ πn)(x)

. (ιn+1 ◦ πn+1)(x) (Lemma 10.6)

. x (by ιn+1 a πn+1),

so (ιn+1 ◦ πn+1)(x) ∼ x. Also, if x ∼ (ιn ◦ πn)(x) where x is finite then πn(x)
is finite too (since ιn reflects finite elements by Lemma 10.3 (2)).

Suppose that k′ ≤ k. We may conclude that y′ ∼ (ιk ◦ πk)(y
′) and πk(y

′) is
finite. Hence, without loss of generality, we may assume that k = k ′.

By the adjunction ιk a πk, we see that πk(y), πk(y
′) vk πk(z). Since both πk(y)

and πk(y
′) are finite, there is a finite x ∈ F k(1) such that πk(y), πk(y

′) vk x

37

and x vk πk(z). Hence, ιk(x) is finite (in Z) and by the adjunction again,
ιk(x) . z. Since ιk is monotone, we also have y ∼ (ιk ◦ πk)(y) . ιk(x) and
similarly y′ . ιk(x). �

Theorem 10.10 Let F with an order satisfy conditions (1)–(5) from the be-
ginning of this section. Then the final coalgebra (Z, ζ) with similarity order .

is an algebraic cpo.

Proof. Theorem 10.9 establishes that each {v ∈ KZ | v . z} is directed and
Theorem 10.7 yields

z .
⊔

n∈N(ιn ◦ πn)(z) .
⊔

{v ∈ KZ | v . z}. �

11 Terms and finite behaviour

In the previous section we have seen how the (finite elements from the) sets
F n(1) play a role as finite approximations of elements in the final coalgebra.
This section concentrates on sets F n(∅), and shows that its elements corre-
spond to the elements of the final coalgebra with “finite behaviour”, i.e., with
only finite transition sequences. In order to be able to express such a result
we first describe transitions in a general coalgebraic sense, using temporal
logic [13].

So far we have made extensive use of the relation lifting Rel(F) : Rel →
Rel of a functor F : Sets → Sets. There is also a useful “predicate” lifting
functor, which lifts F to an endofunctor on the category Pred of predicates.
Its objects are predicates (P ⊆ X) on an underlying set. And its morphisms
f : (P ⊆ X) → (Q ⊆ Y) are functions f : X → Y which restrict to the
predicates: if P (x), also written frequently as x ∈ P , then Q(f(x)). For an
arbitrary category C one sees the notation Sub(C) for the suitably generalized
version of this category Pred.

For an arbitrary functor F : Sets → Sets one can define predicate lifting
Pred(F) : Pred→ Pred on a predicate (or subset) m : P ↪→ X by taking the
image of F (m), as in:

F (P)

F (m)))RRRRRRRRRRRRRRR
// // Pred(F)(P)

��

��
F (X)

i.e., as Pred(F)(P) =
∐

F (m)
F (P)

For many of our examples the functor F preserves inclusions (monomorphisms)
so that we simply have Pred(F)(P) = F (P). This is for instance the case when

38

F preserves weak pullbacks. But it is conceptually clearer to make a distinction
between F and its lifting to predicates.

We shall use the following preservation properties of predicate lifting.

(1) Inclusions: P ⊆ Q implies Pred(F)(P) ⊆ Pred(F)(Q).
(2) Arbitrary intersections: Pred(F)(

⋂

i∈I Pi) =
⋂

i∈I Pred(F)(Pi).
(3) Inverse images: Pred(F)(f−1(Q)) = F (f)−1(Pred(F)(Q)), for f : X → Y

and Q ⊆ Y .

The first point is automatic. The third one follows if the functor F preserves
weak (binary) pullbacks, and the second one if it preserves arbitrary pullbacks.

Given a coalgebra c : X → F (X) we can define associated temporal operators
in terms of predicate lifting (following [13]). The most important operator
that we shall use is “nexttime” ©. It is defined on a predicate P ⊆ X on the
coalgebra’s state space as a new predicate ©P ⊆ X, namely as

©P
def
= c−1(Pred(F)(P)) = {x ∈ X | c(x) ∈ Pred(F)(P)}.

Intuitively, ©P contains those states x such that P holds for all of the suc-
cessors of x, if any. This intuition will be made precise below. Notice that the
coalgebra c is left implicit in the notation ©P .

Once we have nexttime © we can set up an extensive temporal machinery,
see [13]. For instance, P is called an invariant if P ⊆ ©P . And �P may be
defined as the as the greatest fixed point of Q 7→ P ∧ ©Q. This �P is then
the greatest invariant contained in P .

Our next step is to associate an unlabeled transition system with an arbitrary
coalgebra c : X → F (X). For states x, x′ ∈ X we define

x −→ x′
def
⇐⇒ x ∈

(

¬©¬
)

({y | y = x′})

⇐⇒ x 6∈ ©({y | y 6= x′})

⇐⇒ c(x) 6∈ Pred(F)({y | y 6= x′}).

(7)

We need the following two basic results about this induced transition relation.

Proposition 11.1 Let c : X → F (X) be a coalgebra with induced transition
relation −→⊆ X ×X as defined above. Then:

(1) For a predicate P ⊆ X,

©P = {x ∈ X | ∀x′. x −→ x′ =⇒ P (x′)}.

39

(2) If the functor F carries an order v such that predicate lifting is down-
closed (i.e., u v v ∈ Pred(F)(P) implies u ∈ Pred(F)(P), for all P ⊆ X

and u, v ∈ F (X)), then for all x, x′ ∈ X,

x . y and x −→ x′ =⇒ ∃y′. x′ . y′ and y −→ y′.

where we assume a second coalgebra d : Y → F (Y) with y ∈ Y .

Proof. (1) For the inclusion (⊆), assume x ∈ ©P , and let x −→ x′ but
¬P (x′). The latter gives P ⊆ {y | y 6= x′} and so we get a contradiction
from x ∈ ©P ⊆ ©({y | y 6= x′}) = {z | ¬(z −→ x′)}. For the reverse
inclusion (⊇), assume x −→ x′ =⇒ P (x′), for all x′. Then ¬P (x′) =⇒
c(x) ∈ Pred(F)({y | y 6= x′}), and so:

c(x) ∈
⋂

x′ 6∈P
Pred(F)({y | y 6= x′})

= Pred(F)
(

⋂

x′ 6∈P
{y | y 6= x′}

)

⊆ Pred(F)(P).

The latter inclusion follows from
⋂

x′ 6∈P{y | y 6= x′} ⊆ P . Hence we have
©P (x).

(2) From x . y we obtain a simulation 〈r1, r2〉 : R ↪→ X × Y with R(x, y).
Then (c(x), d(y)) ∈ Relv(F)(R), which means that there is a w ∈ F (R)

with c(x) v u
def
= F (r1)(w) and v

def
= F (r2)(w) v c(y). We then reason as

follows.

x −→ x′ ⇐⇒ c(x) 6∈ Pred(F)({z | z 6= x′})

=⇒ u 6∈ Pred(F)({z | z 6= x′})

⇐⇒ w 6∈ F (r1)
−1Pred(F)

(

{z | z 6= x′}
)

= Pred(F)
(

r−1
1 ({z | z 6= x′})

)

= Pred(F)
(

{(a, b) ∈ R | a 6= x′}
)

=⇒ w 6∈ Pred(F){(a, b) ∈ R | ¬R(x′, b)}
)

= Pred(F)
(

r−1
2 (¬R(x′,−))

)

= F (r2)
−1
(

Pred(F)(¬R(x′,−))
)

⇐⇒ v 6∈ Pred(F)(¬R(x′,−))

=⇒ c(y) 6∈ Pred(F)(¬R(x′,−))

⇐⇒ y 6∈ ©(¬R(x′,−))
(1)
⇐⇒ ∃y′. R(x′, y′) ∧ y −→ y′.

Notice that downclosure is used twice, for the first and third implication
‘=⇒’. �

40

Our next step is to consider for an arbitrary coalgebra those states that have
only finitely many successor states. We introduce this predicate as a least fixed
point of nexttime, following [12, Section 8]. Hence, for a coalgebra with state
space X,

FMS
def
=
⋂

{P ⊆ X | © P ⊆ P}.

By construction, the predicate FMS is the least one with FMS = ©FMS =
{x | ∀x′. x −→ x′ =⇒ x′ ∈ FMS}. We claim that it contains those states
with only finitely many successors w.r.t. the transition relation −→.

Lemma 11.2 (1) If x −→ x′ and x ∈ FMS then x′ ∈ FMS.
(2) x ∈ FMS⇐⇒ ¬∃(xn)n∈N. x0 = x ∧ ∀n. xn −→ xn+1.
(3) If x . y and y ∈ FMS then x ∈ FMS—with assumptions as in Proposi-

tion 11.1 (2).

The second point expresses our intuition: elements in FMS are the states that
do not have infinitely many successors.

Proof. (1) If x −→ x′ and x′ 6∈ FMS, then x 6∈ ©FMS = FMS.
(2) (=⇒) Suppose there is an infinite sequence (xn)n∈N of successors with

x0 = x and xn −→ xn+1. Take P = FMS − {x0, x1, x2, . . .}. We claim
that ©P ⊆ P . If this holds we are done, because then FMS ⊆ P , and
thus x = x0 6∈ FMS.

Clearly,©P ⊆ ©FMS ⊆ FMS. Hence it suffices to show that y ∈ ©P
implies that y 6= xn, for any n. Well, suppose we do have xn ∈ ©P . Then
xn+1 ∈ P , which gives a contradiction.

(⇐=) Suppose x 6∈ FMS. Then we can choose an infinite sequence
(xn)n∈N as follows.
(a) Take x0 = x.
(b) Since x0 6∈ FMS = ©FMS, there is an x1 with x0 −→ x1 and x1 6∈

FMS.
(c) Since x1 6∈ FMS = ©FMS, there is an x2 with x1 −→ x2 and x2 6∈

FMS.
(d) Et cetera.

(3) Suppose x . y and x 6∈ FMS. By the previous point there is then an
infinite sequence x = x0 −→ x1 −→ x2 · · · . By Proposition 11.1 (2) we
then also get an infinite sequence y = y0 −→ y1 −→ y2 · · · where xn . yn.
This means y 6∈ FMS. �

For an arbitrary coalgebra c : X → F (X) we define for n ∈ N a function
c(n) : X → F n(X) by induction:

c(0) = id and c(n+1) = F (c(n)) ◦ c

= F n(c) ◦ c(n).

For the final coalgebra ζ : Z
∼=−→ F (Z), if any, we have that each ζ (n) is an

41

isomorphism. Hence we can define for each n ∈ N a function ↑n : F n(∅) → Z

by

↑n
def
=
(

F n(∅)
F n(?Z) //F n(Z)

(ζ(n))−1

∼=
//Z

)

There are various alternative ways to describe these maps ↑n. For instance
as unique map to the final coalgebra from F n(∅)—with coalgebra structure
F n(?F (∅)). Alternatively as:

↑n =
(

F n(∅)
F n(?1) //F n(1)

ιn //Z

)

or as:

↑0 = ?Z : ∅ → Z and ↑n+1 = ζ−1 ◦ F (↑n).

Via this inclusion we may consider the sets of “terms” F n(∅) ↪→ Z as subsets
of the final coalgebra.

Theorem 11.3 Call a coalgebra c : X → F (X) finitely branching if for
each state x ∈ X, the set {x′ | x −→ x′} of successors is finite. This means
that the induced transition system (7) is of the form X → Pfin(X).

(1) For such a finitely branching coalgebra c one has:

x ∈ FMS ⇐⇒ ∃n ∈ N. c(n)(x) ∈ F n(∅)

⇐⇒ ∃n ∈ N.∃y ∈ F n(∅). F n(?)(y) = c(n)(x)

(more formally.)

(2) For the special case when c is a final coalgebra this becomes:

FMS =
⋃

n∈N F
n(∅)

=
⋃

n∈N

∐

↑n

F n(∅) (more formally.)

Proof. (1) Let ⊥ be the predicate false (or empty subset ∅). Then©n(⊥) =
{x | ¬∃x1, . . . , xn. x −→ x1 −→ · · · −→ xn}. We also have that©n(⊥) =
(c(n))−1F n(∅). Hence we must prove FMS =

⋃

n∈N©
n(⊥).

(⊇) Assume x ∈ ©n(⊥), but x 6∈ FMS. The latter means by Lemma 11.2 (2)
that there is an infinite sequence x = x0 −→ x1 −→ · · · −→ xn −→ · · · .
But this contradicts x ∈ ©n(⊥).

(⊆) Suppose now x ∈ FMS, but x 6∈
⋃

n∈N©
n(⊥). Then x ∈ ¬⊥ ⊇ ¬©1

(⊥) ⊇ ¬©2 (⊥) ⊇ · · · . The tree of transitions out of x is thus infinite,
and it is finitely branching, by assumption. Hence there is by König’s
Lemma an infinite path x = x0 −→ x1 −→ · · · , contradicting that
x ∈ FMS.

42

(2) Because

x ∈
⋃

n∈N

∐

↑n

F n(∅) ⇐⇒ ∃n ∈ N.∃y ∈ F n(∅). ↑n(y) = x

⇐⇒ ∃n ∈ N.∃y ∈ F n(∅). F n(?)(y) = ζ(n)(x)

⇐⇒ x ∈ FMS. �

This last result FMS =
⋃

n∈N F
n(∅) shows that the elements of the sets F n(∅)

appear within a final coalgebra as those with only finitely many outgoing
transitions. Notice that orders on functors do not a play a role here.

Acknowledgements

We wish to thank an anonymous referee for careful reading and pointing out
an error in the submitted version of this paper.

References

[1] J. Adámek. Final coalgebras are ideal completions of initial algebras. Journ.

of Logic and Computation, 12(2):217–242, 2002.

[2] A. Baltag. A logic for coalgebraic simulation. In H. Reichel, editor, Coalgebraic

Methods in Computer Science, number 33 in Elect. Notes in Theor. Comp. Sci.
Elsevier, Amsterdam, 2000.
www.elsevier.nl/locate/entcs/volume33.html.

[3] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, Amsterdam, 2nd rev. edition, 1984.

[4] A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to change
of base and geometric morphisms I. Report 90-1, Dep. of Pure Mathematics,
Univ. of Sydney, 1990.

[5] A. Corradini, M. Grosse-Rhode, and R. Heckel. A coalgebraic presentation of
structured transition systems. Theor. Comp. Sci., 260 (1-2):27–55, 2001.

[6] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Math.
Textbooks. Cambridge Univ. Press, 1990.

[7] M.P. Fiore. A coinduction principle for recursive data types based on
bisimulation. Inf. & Comp., 127(2):186–198, 1996.

[8] U. Hensel and B. Jacobs. Coalgebraic theories of sequences in PVS. Journ. of

Logic and Computation, 9(4):463–500, 1999.

[9] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational
setting. Inf. & Comp., 145:107–152, 1998.

43

[10] W.H. Hesselink and A. Thijs. Fixpoint semantics and simulation. Theor. Comp.

Sci., 238:275–311, 2000.

[11] B. Jacobs. Coalgebras and approximation. In A. Nerode and Yu. V.
Matiyasevich, editors, Logical Foundations of Computer Science, number 813
in Lect. Notes Comp. Sci., pages 173–183. Springer, Berlin, 1994.

[12] B. Jacobs. Exercises in coalgebraic specification. In R. Crole R. Backhouse and
J. Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics of

Program Construction, number 2297 in Lect. Notes Comp. Sci., pages 237–280.
Springer, Berlin, 2002.

[13] B. Jacobs. The temporal logic of coalgebras via Galois algebras. Math. Struct.

in Comp. Sci., 12:875–903, 2002.

[14] B. Jacobs and J. Hughes. Simulations in coalgebra. In H.P. Gumm, editor,
Coalgebraic Methods in Computer Science, number 82(1) in Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 2003.
www.elsevier.nl/locate/entcs/volume82.html.

[15] N. Lynch and F. Vaandrager. Forward and backward simulations. I. Untimed
systems. Inf. & Comp., 121(2):214–233, 1995.

[16] A.M. Pitts. A co-induction principle for recursively defined domains. Theor.

Comp. Sci., 124(2):195–219, 1994.

[17] J. Rutten. Relators and metric bisimulations. In B. Jacobs, L. Moss, H. Reichel,
and J. Rutten, editors, Coalgebraic Methods in Computer Science, number 11
in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 1998.
www.elsevier.nl/locate/entcs/volume11.html.

[18] J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–
80, 2000.

[19] M.B. Smyth and G.D. Plotkin. The category theoretic solution of recursive
domain equations. SIAM Journ. Comput., 11:761–783, 1982.

[20] A. Thijs. Simulation and Fixpoint Semantics. PhD thesis, Univ. Groningen,
1996.

[21] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In
Logic in Computer Science, pages 280–291. IEEE, Computer Science Press,
1997.

[22] K. Worytkiewicz. Paths and simulations. In R. Blute and P. Selinger, editors,
Category Theory and Computer Science 2002, number 69 in Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 2003.
www.elsevier.nl/locate/entcs/volume69.html.

44

