
The Coinductive Approach to Verifying
Cryptographic Protocols

Jesse Hughes

joint work with Martijn Warnier

jesseh@cs.kun.nl

University of Nijmegen

The Coinductive Approach to Verifying Cryptographic Protocols – p.1/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Outline
I. Cryptographic protocols in general

II. An example protocol

III. Coalgebra primer

IV. Temporal operators/Galois algebras

V. The specification language CCSL

VI. The CCSL compiler

VII. Security protocols revisited

VIII. Paulson’s inductive method

The Coinductive Approach to Verifying Cryptographic Protocols – p.2/27

Part One: The Background

The Coinductive Approach to Verifying Cryptographic Protocols – p.3/27

Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.

The Coinductive Approach to Verifying Cryptographic Protocols – p.4/27

Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.

The Coinductive Approach to Verifying Cryptographic Protocols – p.4/27

Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.

The Coinductive Approach to Verifying Cryptographic Protocols – p.4/27

Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.

The Coinductive Approach to Verifying Cryptographic Protocols – p.4/27

Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.

The Coinductive Approach to Verifying Cryptographic Protocols – p.4/27

Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.

The Coinductive Approach to Verifying Cryptographic Protocols – p.4/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

Principal B sends to Principal A a message containing

• his name, B,

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

Principal B sends to Principal A a message containing

• his name, B,

• and a nonce, NB.

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

Principal B sends to Principal A a message containing

• his name, B,

• and a nonce, NB.

This is (mostly) encrypted with A’s public key, pkA.

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

A replies with a message containing

• a hash of B’s nonce,

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

A replies with a message containing

• a hash of B’s nonce,

• a fresh nonce, NA,

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

A replies with a message containing

• a hash of B’s nonce,

• a fresh nonce, NA,

• A’s name, A,

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

A replies with a message containing

• a hash of B’s nonce,

• a fresh nonce, NA,

• A’s name, A,

• and a key, KAB.

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

A replies with a message containing

• a hash of B’s nonce,

• a fresh nonce, NA,

• A’s name, A,

• and a key, KAB.

All of this is encrypted with B’s public key, pkB.
The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

B replies with a hash of NA

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

B replies with a hash of NA encrypted with the session key
KAB.

The Coinductive Approach to Verifying Cryptographic Protocols – p.5/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

For this, we need an appropriate model in which to reason
about the protocols.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

For this, we need an appropriate model in which to reason
about the protocols.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

For this, we need an appropriate model in which to reason
about the protocols.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

• Each is aware the other knows the key.

For this, we need an appropriate model in which to reason
about the protocols.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

• Each is aware the other knows the key.

For this, we need an appropriate model in which to reason
about the protocols.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

• Each is aware the other knows the key.

For this, we need an appropriate model in which to reason
about the protocols.
We analyze the protocol using a Dolev-Yao security model.
That is, we create a model consisting of

• any number of “normal” agents and

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

• Each is aware the other knows the key.

For this, we need an appropriate model in which to reason
about the protocols.
We analyze the protocol using a Dolev-Yao security model.
That is, we create a model consisting of

• any number of “normal” agents and

• one very powerful spy.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

• Each is aware the other knows the key.

For this, we need an appropriate model in which to reason
about the protocols.
We analyze the protocol using a Dolev-Yao security model.
That is, we create a model consisting of

• any number of “normal” agents and

• one very powerful spy.

We then prove that the conditions above hold.
The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

needed for:

• to model abstract data types messages

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

needed for:

• to model abstract data types messages
• to model dynamic systems users’ knowledge

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

needed for:

• to model abstract data types messages
• to model dynamic systems users’ knowledge
• to use temporal reasoning correctness conditions

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

needed for:

• to model abstract data types messages
• to model dynamic systems users’ knowledge
• to use temporal reasoning correctness conditions

The language CCSL allows all of this.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

theory:

• to model abstract data types algebra
• to model dynamic systems
• to use temporal reasoning

The language CCSL allows all of this.

CCSL is built upon an abstract mathematical foundation.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

theory:

• to model abstract data types algebra
• to model dynamic systems coalgebra
• to use temporal reasoning

The language CCSL allows all of this.

CCSL is built upon an abstract mathematical foundation.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Analysis
Requirements:

theory:

• to model abstract data types algebra
• to model dynamic systems coalgebra
• to use temporal reasoning Galois algebra

The language CCSL allows all of this.

CCSL is built upon an abstract mathematical foundation.

The Coinductive Approach to Verifying Cryptographic Protocols – p.6/27

Part Two: The Theory

The Coinductive Approach to Verifying Cryptographic Protocols – p.7/27

Algebra primer
Let Σ be a signature, i.e.,

Σ = {f
(ni)
i
| i ∈ I}.

The Coinductive Approach to Verifying Cryptographic Protocols – p.8/27

Algebra primer
Let Σ be a signature, i.e.,

Σ = {f
(ni)
i
| i ∈ I}.

A Σ-algebra is a set A together with an interpretation for
each fi.

The Coinductive Approach to Verifying Cryptographic Protocols – p.8/27

Algebra primer

Example: Σ = {e,−−1,×}.

1 A A×A

A

−1

�� ×
~~||

||
||

||

e
��

::
::

::
:

The Coinductive Approach to Verifying Cryptographic Protocols – p.8/27

Algebra primer

Example: Σ = {e,−−1,×}.

1 + A + A× A

A
��

The Coinductive Approach to Verifying Cryptographic Protocols – p.8/27

Algebra primer

Example: Σ = {e,−−1,×}.

1 + A + A× A FA

��

A
��

A

Let F :SET //SET be given. An F -algebra is a set A

with a structure
FA

��

A

The Coinductive Approach to Verifying Cryptographic Protocols – p.8/27

Algebra primer

Example: Σ = {e,−−1,×}.

1 + A + A× A FA

��

A
��

A

For polynomial functors, an F -algebra is a universal
algebra.

The Coinductive Approach to Verifying Cryptographic Protocols – p.8/27

Coalgebra primer
Example:

1 + A + A× A FA

��

A
��

A

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

An F -coalgebra is a set A with a structure

FA

A

OO

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

An F -coalgebra is a set A with a structure

FA

A

OO

Think: a coalgebra is a set in which each element can be
decomposed as elements of a structured set.

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras model non-well-founded structures, including
infinitary trees, streams, etc.

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras can also represent dynamic systems.

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras can also represent dynamic systems.

In security protocols, the principals’ knowledge changes
over time as messages are sent and received.

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras can also represent dynamic systems.

In security protocols, the principals’ knowledge changes
over time as messages are sent and received.

Hence, we use a coalgebraic model.

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27

Coalgebraic signatures
An algebraic signature is given by declarations:

fi :X
ni //X

The Coinductive Approach to Verifying Cryptographic Protocols – p.10/27

Coalgebraic signatures
An algebraic signature is given by declarations:

fi :FiX //X

The Coinductive Approach to Verifying Cryptographic Protocols – p.10/27

Coalgebraic signatures
An algebraic signature is given by declarations:

fi :FiX //X

Equivalently,
f :

∐
i
FiX //X

The Coinductive Approach to Verifying Cryptographic Protocols – p.10/27

Coalgebraic signatures
An algebraic signature is given by declarations:

fi :FiX //X

Equivalently,
f :

∐
i
FiX //X

A coalgebraic signature is given by declarations

fi :X //FiX

The Coinductive Approach to Verifying Cryptographic Protocols – p.10/27

Coalgebraic signatures
An algebraic signature is given by declarations:

fi :FiX //X

Equivalently,
f :

∐
i
FiX //X

A coalgebraic signature is given by declarations

fi :X //FiX

Equivalently,
f :X //

∏
i
FiX

The Coinductive Approach to Verifying Cryptographic Protocols – p.10/27

Examples

FX Initial algebra Final coalgebra

Z ×X ∅ infinite streams

1 + Z ×X finite streams finite and infinite

streams

1 + X ×X finite trees finite and infinite

trees

PωX finite, arb.

branching trees

Kripke frame

The Coinductive Approach to Verifying Cryptographic Protocols – p.11/27

Examples

FX Initial algebra Final coalgebra

Z ×X ∅ infinite streams

1 + Z ×X finite streams finite and infinite

streams

1 + X ×X finite trees finite and infinite

trees

PωX finite, arb.

branching trees

Kripke frame

The Coinductive Approach to Verifying Cryptographic Protocols – p.11/27

Examples

FX Initial algebra Final coalgebra

Z ×X ∅ infinite streams

1 + Z ×X finite streams finite and infinite

streams

1 + X ×X finite trees finite and infinite

trees

PωX finite, arb.

branching trees

Kripke frame

The Coinductive Approach to Verifying Cryptographic Protocols – p.11/27

Examples

FX Initial algebra Final coalgebra

Z ×X ∅ infinite streams

1 + Z ×X finite streams finite and infinite

streams

1 + X ×X finite trees finite and infinite

trees

PωX finite, arb.

branching trees

Kripke frame

The Coinductive Approach to Verifying Cryptographic Protocols – p.11/27

Our coalgebra

A B

Spy

Consider a run with three principals: A, B and the Spy.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

A B

Spy

Consider a run with three principals: A, B and the Spy.

Suppose that A sends a message to B.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!

Then, in the next instant, the Spy learns the message.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!

Then, in the next instant, the Spy learns the message.

Supposing that the message arrives at that time, then. . .

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

. . . the next instant, B learns the message, too.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

So, to describe this system, we use a coalgebra with

• a method giving the next state,

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

So, to describe this system, we use a coalgebra with

• a method giving the next state,

• attributes describing the action occurring,

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

So, to describe this system, we use a coalgebra with

• a method giving the next state,

• attributes describing the action occurring,

• attributes describing the participants’ knowledge.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

We would like to prove, e.g., that

The Spy never learns the session key.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

We would like to prove, e.g., that

The Spy never learns the session key.

For this, we need to reason temporally.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Our coalgebra

//

!
// !

We would like to prove, e.g., that

The Spy never learns the session key.

For this, we need to reason temporally.
Categories of coalgebras come with temporal operators,
which we can understand in terms of Galois algebras.

The Coinductive Approach to Verifying Cryptographic Protocols – p.12/27

Galois algebras
A Galois algebra is a complete, Boolean algebra P together
with an operation

[] :P //P

which preserves meets.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras
A Galois algebra is a complete, Boolean algebra P together
with an operation

[] :P //P

which preserves meets.

Think: []P (x) means P holds for all successor states of x.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras
A Galois algebra is a complete, Boolean algebra P together
with an operation

[] :P //P

which preserves meets.

Think: []P (x) means P holds for all successor states of x.

With just these assumptions, we can develop a remarkable
amount of temporal logic.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

〈 〉← a []

[]← ` 〈 〉

[] is part of a Galois connection, with left adjoint 〈 〉←.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

〈 〉← a []

[]←

`

〈 〉

Each operator has a conjugate,

[]← = ¬〈 〉←¬

〈 〉 = ¬[]¬

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

〈 〉← a []

[]← ` 〈 〉

This yields another Galois connection.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

〈 〉← a [] Next time

[]← ` 〈 〉

In our interpretation, [] means “in every next state”.

[]P = {p | ∀p→ r . P (r)}

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

〈 〉← a [] Next time

[]← ` 〈 〉

In our interpretation, [] means “in every next state”.

[]P = {p | ∀p→ r . P (r)}

A proposition P such that P implies []P is called an
invariant.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

〈 〉← a [] Next time

[]← ` 〈 〉

In our interpretation, [] means “in every next state”.

[]P = {p | ∀p→ r . P (r)}

A proposition P such that P implies []P is called an
invariant.
Invariants are the coalgebraic analogues to inductive
predicates.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

Some time
preceding 〈 〉

← a [] Next time

Always
preceding []← ` 〈 〉 Some next

time

This induces the remaining interpretations.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

Some time
preceding 〈 〉

← a [] Next time

Always
preceding []← ` 〈 〉 Some next

time

This induces the remaining interpretations.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

Some time
preceding 〈 〉

← a [] Next time

Always
preceding []← ` 〈 〉 Some next

time

This induces the remaining interpretations.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

Some time
preceding 〈 〉

← a [] Next time

Always
preceding []← ` 〈 〉 Some next

time

This allows us to represent statements like

If B receives a message at time t, then B knows
the message at t + 1.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

Some time
preceding 〈 〉

← a [] Next time

Always
preceding []← ` 〈 〉 Some next

time

Note: from just a complete partial order with a
meet-preserving operator, we get the remaining three
operators.

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Galois algebras

Some time
preceding 〈 〉

← a [] Next time

Always
preceding []← ` 〈 〉 Some next

time

Note: from just a complete partial order with a
meet-preserving operator, we get the remaining three
operators.

But wait! There’s more. . .

The Coinductive Approach to Verifying Cryptographic Protocols – p.13/27

Fixed point operators

Always

← ` 3

We can define an “always” operator via a fixed point
construction:

�

P = νZ . P ∧ []Z

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27

Fixed point operators

Always

← ` 3

We can define an “always” operator via a fixed point
construction:

�

P = νZ . P ∧ []Z

�

P is the greatest invariant contained in P .

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27

Fixed point operators

Always

← ` 3

We can define an “always” operator via a fixed point
construction:

�

P = νZ . P ∧ []Z

�

P is the greatest invariant contained in P .

This operator preserves meets, so we have another Galois
algebra.

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27

Fixed point operators

Once 3
← a Always

Previously ← ` 3 Eventually

This yields the remaining operators and interpretations.

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27

Fixed point operators

Once 3
← a Always

Previously ← ` 3 Eventually

Now, we can represent statements like

The Spy never learns the private keys of the other
principals.

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27

Fixed point operators

Once 3
← a Always

Previously ← ` 3 Eventually

All of this structure just comes from the presence of the
“next time” operator, [].

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27

Part Three: CCSL

The Coinductive Approach to Verifying Cryptographic Protocols – p.15/27

Overview
The mathematical theories of algebra, coalgebra and
Galois algebras give us a number of tools for reasoning
about class specifications.

The Coinductive Approach to Verifying Cryptographic Protocols – p.16/27

Overview
The mathematical theories of algebra, coalgebra and
Galois algebras give us a number of tools for reasoning
about class specifications.

CCSL provides a means for expressing a class
specification in terms of these theories.

Class
Spec

The Coinductive Approach to Verifying Cryptographic Protocols – p.16/27

Overview
The compiler translates a specification into a formal,
logical theory (in PVS/Isabelle).

CCSLClass PVS
TheorySpec

The Coinductive Approach to Verifying Cryptographic Protocols – p.16/27

Overview
This theory includes induction (algebra), coinduction
(coalgebra), temporal axioms (Galois algebra), etc.

CCSLClass PVS
TheorySpec

Informal Theory

The Coinductive Approach to Verifying Cryptographic Protocols – p.16/27

Overview
The user then proves the correctness of the specification in
the theorem prover.

CCSL UserClass
TheorySpec

ProofPVS

The Coinductive Approach to Verifying Cryptographic Protocols – p.16/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes

• Abstract data types

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

Models

• Object oriented classes Coalgebras
• Abstract data types Algebras

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

Models

• Object oriented classes Greatest fixed point
• Abstract data types Least fixed point

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

Reasoning

• Object oriented classes Coinductive
• Abstract data types Inductive

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

In our setting, we represent:

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

In our setting, we represent:

• static structure by an abstract data type
(e.g. the set of messages);

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

In our setting, we represent:

• static structure by an abstract data type
(e.g. the set of messages);

• dynamic structure by a class
(e.g. principal’s current knowledge).

The Coinductive Approach to Verifying Cryptographic Protocols – p.17/27

CCSL class specs
A class specification consists of:

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The method declarations define a coalgebraic signature.

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The method declarations define a coalgebraic signature.

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The assertions restrict the models of the signature.

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The assertions restrict the models of the signature.

Assertions are axioms for the specification.

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The assertions restrict the models of the signature.

Assertions are axioms for the specification.

Here’s where the assumptions come in!

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The theorems are claims to be proved (by the user).

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The theorems are claims to be proved (by the user).

Correctness conditions for a specification are represented
as theorems.

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27

The CCSL compiler
Input: class and abstract data specifications.

The Coinductive Approach to Verifying Cryptographic Protocols – p.19/27

The CCSL compiler
Input: class and abstract data specifications.

Output: PVS theories including axioms, definitions, etc.

The Coinductive Approach to Verifying Cryptographic Protocols – p.19/27

The CCSL compiler
Input: class and abstract data specifications.

Output: PVS theories including axioms, definitions, etc.

This includes:

• definitions of invariant predicate, homomorphism, etc.,

The Coinductive Approach to Verifying Cryptographic Protocols – p.19/27

The CCSL compiler
Input: class and abstract data specifications.

Output: PVS theories including axioms, definitions, etc.

This includes:

• definitions of invariant predicate, homomorphism, etc.,

• principles of induction, coinduction, etc.,

The Coinductive Approach to Verifying Cryptographic Protocols – p.19/27

The CCSL compiler
Input: class and abstract data specifications.

Output: PVS theories including axioms, definitions, etc.

This includes:

• definitions of invariant predicate, homomorphism, etc.,

• principles of induction, coinduction, etc.,

• basic theory of temporal operators.

The Coinductive Approach to Verifying Cryptographic Protocols – p.19/27

Part Four: The Application

The Coinductive Approach to Verifying Cryptographic Protocols – p.20/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We make a number of assumptions:

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We make a number of assumptions:

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We make a number of assumptions:

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We do not assume:

• a fixed number of participants

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We do not assume:

• a fixed number of participants

• a limited number of parallel protocol runs

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We do not assume:

• a fixed number of participants

• a limited number of parallel protocol runs

• participants send only protocol messages

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27

The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:

• Represents the state of the system at a point in time;

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:

• Represents the state of the system at a point in time;

• Axiomatizes the effects of sending and receiving
messages;

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:

• Represents the state of the system at a point in time;

• Axiomatizes the effects of sending and receiving
messages;

• Restricts the possible actions of the participants.

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

MsgContext: sample methods

MsgContext : CLASSSPEC
METHOD

� � � �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]

The basic methods represent

• the flow of time (� �� �),

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

MsgContext: sample methods

MsgContext : CLASSSPEC
METHOD

� � � �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]

The basic methods represent

• the flow of time (� �� �),

• the action occurring (�� � � � �),

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

MsgContext: sample methods

MsgContext : CLASSSPEC
METHOD

� � � �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]

The basic methods represent

• the flow of time (� �� �),

• the action occurring (�� � � � �),

• the state of the principals’ knowledge (

	 ��
 �).

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

MsgContext: sample assertion

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]
ASSERTION

�� � ��� �(x) = idle⇒
∀(P : Princ) :

x.

	 ��
 �(P) = x. � �� �

.

	 ��
 �(P)

Knowledge does not change if idle.

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

MsgContext: sample theorem

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 ��
 � : Self ×Princ→ [Message→ Bool]
ASSERTION

�� � ��� �(x) = idle⇒
∀(P : Princ) :

x.

	 ��
 �(P) = x. � �� �

.

	 ��
 �(P)
THEOREM
∀(P : Princ,m : Message) :

x.

	 ��
 �(P)(m)⇒
x. � �� �

.

	 ��
 �(P)(m).

The Coinductive Approach to Verifying Cryptographic Protocols – p.22/27

Inheritance
The CCSL language supports class inheritance.

We use:

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

• A generic MsgContext class

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

• A generic MsgContext class
• general model for learning, message passing, etc.

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

• A generic MsgContext class
• general model for learning, message passing, etc.
• our security model assumptions.

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

Needham Schroeder

08jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

Bilateral Key Exchange

KS

• A generic MsgContext class

• Specific protocol classes containing:

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

Needham Schroeder

08jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

Bilateral Key Exchange

KS

• A generic MsgContext class

• Specific protocol classes containing:
• Axioms describing the protocol,

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

Needham Schroeder

08jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

Bilateral Key Exchange

KS

• A generic MsgContext class

• Specific protocol classes containing:
• Axioms describing the protocol,
• Correctness theorems.

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol . . .

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates . . .

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;
• no one else knows K.

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;
• no one else knows K.

All of this is easily expressible in CCSL, using our
MsgContext protocol.

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;
• no one else knows K.

Admittedly, proving it is not so easy.

The Coinductive Approach to Verifying Cryptographic Protocols – p.24/27

Paulson’s Inductive Approach
Lawrence Paulson uses a similar approach to analyzing
security protocols.

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Paulson’s Inductive Approach
Lawrence Paulson uses a similar approach to analyzing
security protocols.
However, his models are inherently algebraic, rather than
coalgebraic.

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Paulson’s Inductive Approach
Lawrence Paulson uses a similar approach to analyzing
security protocols.
However, his models are inherently algebraic, rather than
coalgebraic.
He considers the set of finite traces for a protocol. This set
can be given by a least fixed point construction, i.e., by an
initial algebra.

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and . . .

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and

• if P (evs), then P (ev # evs).

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and

• if P (evs), then P (ev # evs).

This is analogous to showing that P is an invariant, in the
coalgebraic sense.

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and

• if P (evs), then P (ev # evs).

This is analogous to showing that P is an invariant, in the
coalgebraic sense.

The main theoretical difference is that we consider infinite
traces as models, while Paulson considers finite traces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.25/27

Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s

Separate
specification
language (CCSL)

Specified directly in
Isabelle

The Coinductive Approach to Verifying Cryptographic Protocols – p.26/27

Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

The Coinductive Approach to Verifying Cryptographic Protocols – p.26/27

Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

Temporal reasoning Inductive reasoning

The Coinductive Approach to Verifying Cryptographic Protocols – p.26/27

Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

Temporal reasoning Inductive reasoning
Inheritance No inheritance

The Coinductive Approach to Verifying Cryptographic Protocols – p.26/27

Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

Temporal reasoning Inductive reasoning
Inheritance No inheritance

As well, our specification places fewer restrictions on the
behavior of the participants . . .

The Coinductive Approach to Verifying Cryptographic Protocols – p.26/27

Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

Temporal reasoning Inductive reasoning
Inheritance No inheritance

As well, our specification places fewer restrictions on the
behavior of the participants but we pay for this generality!

The Coinductive Approach to Verifying Cryptographic Protocols – p.26/27

Summary
Summarizing:

The Coinductive Approach to Verifying Cryptographic Protocols – p.27/27

Summary
Summarizing:

Specify a protocol in CCSL, using temporal operators.

The Coinductive Approach to Verifying Cryptographic Protocols – p.27/27

Summary
Summarizing:

Specify a protocol in CCSL, using temporal operators.

The protocol inherits from a general MsgContext class.

The Coinductive Approach to Verifying Cryptographic Protocols – p.27/27

Summary
Summarizing:

Specify a protocol in CCSL, using temporal operators.

The protocol inherits from a general MsgContext class.

Compile the CCSL specification into a PVS theory.

The Coinductive Approach to Verifying Cryptographic Protocols – p.27/27

Summary
Summarizing:

Specify a protocol in CCSL, using temporal operators.

The protocol inherits from a general MsgContext class.

Compile the CCSL specification into a PVS theory.

Prove the correctness conditions.

The Coinductive Approach to Verifying Cryptographic Protocols – p.27/27

Summary
Summarizing:

Specify a protocol in CCSL, using temporal operators.

The protocol inherits from a general MsgContext class.

Compile the CCSL specification into a PVS theory.

Prove the correctness conditions.

More on CCSL can be found here:
http://wwwtcs.inf.tu-dresden.de/∼tews/ccsl/

The Coinductive Approach to Verifying Cryptographic Protocols – p.27/27

	Outline
	
	Cryptographic Protocols
	An example Protocol
	Analysis
	
	Algebra primer
	Coalgebra primer
	Coalgebraic signatures
	Examples
	Our coalgebra
	Galois algebras
	Fixed point operators
	
	Overview
	The specification language CCSL
	{C}{C}{S}{L} class specs
	The CCSL compiler
	
	Back to security protocols
	untilSlide *{4}{The Message Context class}untilSlide *{7}{�romSlide *{5}{MsgContext: sample methods}}onlySlide *{8}{MsgContext: sample assertion}�romSlide *{9}{MsgContext: sample theorem}
	Inheritance
	Correctness
	Paulson's Inductive Approach
	Comparison
	Summary

