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Part One: The Background
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Cryptographic Protocols
Cryptographic Protocols, Abstract representation for:

• Distributing secret keys over an open (insecure)
network.

• Authenticating principals to each other.

• Assuring secrecy of message content.

• Assuring integrity of messages.

• A combination of all of the above.
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An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.
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An example Protocol
Bilateral Key Exchange with Public Key Protocol: a
simple protocol for distributing a symmetric key.

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

B replies with a hash of NA encrypted with the session key
KAB.
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Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

For this, we need an appropriate model in which to reason
about the protocols.
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Analysis
It would be nice to know that, if two participants use a
protocol, the outcome is good.

• No one learns the key they agree to use;

• Both of them know the key;

• Each is aware the other knows the key.

For this, we need an appropriate model in which to reason
about the protocols.
We analyze the protocol using a Dolev-Yao security model.
That is, we create a model consisting of

• any number of “normal” agents and

• one very powerful spy.

We then prove that the conditions above hold.
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needed for:

• to model abstract data types messages
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Part Two: The Theory
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Algebra primer
Let Σ be a signature, i.e.,

Σ = {f
(ni)
i
| i ∈ I}.
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Algebra primer
Let Σ be a signature, i.e.,

Σ = {f
(ni)
i
| i ∈ I}.

A Σ-algebra is a set A together with an interpretation for
each fi.
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Algebra primer

Example: Σ = {e,−−1,×}.

1 A A×A

A

−1

�� ×
~~||

||
||

||

e
��

::
::

::
:
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A
��
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Algebra primer

Example: Σ = {e,−−1,×}.

1 + A + A× A FA

��

A
��

A

Let F :SET //SET be given. An F -algebra is a set A

with a structure
FA

��

A
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Algebra primer

Example: Σ = {e,−−1,×}.

1 + A + A× A FA

��

A
��

A

For polynomial functors, an F -algebra is a universal
algebra.
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Coalgebra primer
Example:

1 + A + A× A FA
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A
��

A
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Example:

1 + A + A× A FA

A

OO

A

OO

An F -coalgebra is a set A with a structure

FA

A

OO
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Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

An F -coalgebra is a set A with a structure

FA

A

OO

Think: a coalgebra is a set in which each element can be
decomposed as elements of a structured set.
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Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras model non-well-founded structures, including
infinitary trees, streams, etc.
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Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras can also represent dynamic systems.

The Coinductive Approach to Verifying Cryptographic Protocols – p.9/27



Coalgebra primer
Example:
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OO

A

OO

Coalgebras can also represent dynamic systems.

In security protocols, the principals’ knowledge changes
over time as messages are sent and received.
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Coalgebra primer
Example:

1 + A + A× A FA

A

OO

A

OO

Coalgebras can also represent dynamic systems.

In security protocols, the principals’ knowledge changes
over time as messages are sent and received.

Hence, we use a coalgebraic model.
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Coalgebraic signatures
An algebraic signature is given by declarations:

fi :X
ni //X
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fi :FiX //X

Equivalently,
f :

∐
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FiX //X

A coalgebraic signature is given by declarations
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Equivalently,
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∏
i
FiX

The Coinductive Approach to Verifying Cryptographic Protocols – p.10/27



Examples

FX Initial algebra Final coalgebra

Z ×X ∅ infinite streams

1 + Z ×X finite streams finite and infinite

streams

1 + X ×X finite trees finite and infinite

trees

PωX finite, arb.

branching trees

Kripke frame
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Our coalgebra

A B

Spy

Consider a run with three principals: A, B and the Spy.
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Our coalgebra

A B

Spy

Consider a run with three principals: A, B and the Spy.

Suppose that A sends a message to B.
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Our coalgebra

//

!

Then, in the next instant, the Spy learns the message.
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Our coalgebra

//

!

Then, in the next instant, the Spy learns the message.

Supposing that the message arrives at that time, then. . .
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Our coalgebra

//

!
// !

. . . the next instant, B learns the message, too.
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Our coalgebra

//

!
// !

So, to describe this system, we use a coalgebra with

• a method giving the next state,
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Our coalgebra

//

!
// !

So, to describe this system, we use a coalgebra with

• a method giving the next state,

• attributes describing the action occurring,

• attributes describing the participants’ knowledge.
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Our coalgebra

//

!
// !

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]
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Our coalgebra

//

!
// !

We would like to prove, e.g., that

The Spy never learns the session key.
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Our coalgebra

//

!
// !

We would like to prove, e.g., that

The Spy never learns the session key.

For this, we need to reason temporally.
Categories of coalgebras come with temporal operators,
which we can understand in terms of Galois algebras.
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Galois algebras
A Galois algebra is a complete, Boolean algebra P together
with an operation

[ ] :P //P

which preserves meets.
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A Galois algebra is a complete, Boolean algebra P together
with an operation

[ ] :P //P

which preserves meets.

Think: [ ]P (x) means P holds for all successor states of x.
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Galois algebras
A Galois algebra is a complete, Boolean algebra P together
with an operation

[ ] :P //P

which preserves meets.

Think: [ ]P (x) means P holds for all successor states of x.

With just these assumptions, we can develop a remarkable
amount of temporal logic.
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Galois algebras

〈 〉← a [ ]

[ ]← ` 〈 〉

[ ] is part of a Galois connection, with left adjoint 〈 〉←.
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Galois algebras

〈 〉← a [ ]

[ ]←

`

〈 〉

Each operator has a conjugate,

[ ]← = ¬〈 〉←¬

〈 〉 = ¬[ ]¬
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Galois algebras

〈 〉← a [ ]

[ ]← ` 〈 〉

This yields another Galois connection.
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Galois algebras

〈 〉← a [ ] Next time

[ ]← ` 〈 〉

In our interpretation, [ ] means “in every next state”.

[ ]P = {p | ∀p→ r . P (r)}
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Galois algebras

〈 〉← a [ ] Next time

[ ]← ` 〈 〉

In our interpretation, [ ] means “in every next state”.

[ ]P = {p | ∀p→ r . P (r)}

A proposition P such that P implies [ ]P is called an
invariant.
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Galois algebras

〈 〉← a [ ] Next time

[ ]← ` 〈 〉

In our interpretation, [ ] means “in every next state”.

[ ]P = {p | ∀p→ r . P (r)}

A proposition P such that P implies [ ]P is called an
invariant.
Invariants are the coalgebraic analogues to inductive
predicates.
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Galois algebras

Some time
preceding 〈 〉

← a [ ] Next time

Always
preceding [ ]← ` 〈 〉 Some next

time

This induces the remaining interpretations.
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Galois algebras

Some time
preceding 〈 〉

← a [ ] Next time

Always
preceding [ ]← ` 〈 〉 Some next

time

This allows us to represent statements like

If B receives a message at time t, then B knows
the message at t + 1.
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Galois algebras

Some time
preceding 〈 〉

← a [ ] Next time

Always
preceding [ ]← ` 〈 〉 Some next

time

Note: from just a complete partial order with a
meet-preserving operator, we get the remaining three
operators.
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Galois algebras

Some time
preceding 〈 〉

← a [ ] Next time

Always
preceding [ ]← ` 〈 〉 Some next

time

Note: from just a complete partial order with a
meet-preserving operator, we get the remaining three
operators.

But wait! There’s more. . .
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Fixed point operators

Always

← ` 3

We can define an “always” operator via a fixed point
construction:

�

P = νZ . P ∧ [ ]Z
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Fixed point operators

Always

← ` 3

We can define an “always” operator via a fixed point
construction:

�

P = νZ . P ∧ [ ]Z

�

P is the greatest invariant contained in P .
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Fixed point operators

Always

← ` 3

We can define an “always” operator via a fixed point
construction:

�

P = νZ . P ∧ [ ]Z

�

P is the greatest invariant contained in P .

This operator preserves meets, so we have another Galois
algebra.
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Fixed point operators

Once 3
← a Always

Previously ← ` 3 Eventually

This yields the remaining operators and interpretations.
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Fixed point operators

Once 3
← a Always

Previously ← ` 3 Eventually

Now, we can represent statements like

The Spy never learns the private keys of the other
principals.

The Coinductive Approach to Verifying Cryptographic Protocols – p.14/27



Fixed point operators

Once 3
← a Always

Previously ← ` 3 Eventually

All of this structure just comes from the presence of the
“next time” operator, [ ].
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Part Three: CCSL

The Coinductive Approach to Verifying Cryptographic Protocols – p.15/27



Overview
The mathematical theories of algebra, coalgebra and
Galois algebras give us a number of tools for reasoning
about class specifications.
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Overview
The mathematical theories of algebra, coalgebra and
Galois algebras give us a number of tools for reasoning
about class specifications.

CCSL provides a means for expressing a class
specification in terms of these theories.

Class
Spec
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Overview
The compiler translates a specification into a formal,
logical theory (in PVS/Isabelle).

CCSLClass PVS
TheorySpec

The Coinductive Approach to Verifying Cryptographic Protocols – p.16/27



Overview
This theory includes induction (algebra), coinduction
(coalgebra), temporal axioms (Galois algebra), etc.

CCSLClass PVS
TheorySpec

Informal Theory
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Overview
The user then proves the correctness of the specification in
the theorem prover.

CCSL UserClass
TheorySpec

ProofPVS
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

Models

• Object oriented classes Coalgebras
• Abstract data types Algebras
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

Models

• Object oriented classes Greatest fixed point
• Abstract data types Least fixed point
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

Reasoning

• Object oriented classes Coinductive
• Abstract data types Inductive
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

In our setting, we represent:
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

In our setting, we represent:

• static structure by an abstract data type
(e.g. the set of messages);
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The specification language CCSL
The Coalgebraic Class Specification Language is a formal
language for writing specifications of:

• Object oriented classes
• Abstract data types

In our setting, we represent:

• static structure by an abstract data type
(e.g. the set of messages);

• dynamic structure by a class
(e.g. principal’s current knowledge).
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CCSL class specs
A class specification consists of:
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CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The method declarations define a coalgebraic signature.

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]
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CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The assertions restrict the models of the signature.

Assertions are axioms for the specification.

Here’s where the assumptions come in!
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CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The theorems are claims to be proved (by the user).
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CCSL class specs
A class specification consists of:

• Coalgebraic method declarations;
• Assertions (axioms);
• Theorems (to be proved).

The theorems are claims to be proved (by the user).

Correctness conditions for a specification are represented
as theorems.

The Coinductive Approach to Verifying Cryptographic Protocols – p.18/27



The CCSL compiler
Input: class and abstract data specifications.
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The CCSL compiler
Input: class and abstract data specifications.

Output: PVS theories including axioms, definitions, etc.

This includes:

• definitions of invariant predicate, homomorphism, etc.,

• principles of induction, coinduction, etc.,
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The CCSL compiler
Input: class and abstract data specifications.

Output: PVS theories including axioms, definitions, etc.

This includes:

• definitions of invariant predicate, homomorphism, etc.,

• principles of induction, coinduction, etc.,

• basic theory of temporal operators.
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Part Four: The Application
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Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27



Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We make a number of assumptions:

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27



Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We make a number of assumptions:

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27



Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We make a number of assumptions:

• Perfect cryptography assumption

• Dolev-Yao model : Spy can read (but not nec. decrypt)
any message in the network

• Other assumptions: freshness, “perfect” hashes, true
randomness of nonces.

The Coinductive Approach to Verifying Cryptographic Protocols – p.21/27



Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We do not assume:

• a fixed number of participants
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1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We do not assume:

• a fixed number of participants

• a limited number of parallel protocol runs
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Back to security protocols
Considering protocols like:

1. B→ A : B, {NB, B}pkA

2. A→ B : {Sha(NB), NA, A,KAB}pkB

3. B→ A : {Sha(NA)}KAB

We do not assume:

• a fixed number of participants

• a limited number of parallel protocol runs

• participants send only protocol messages
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The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:
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The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:

• Represents the state of the system at a point in time;

• Axiomatizes the effects of sending and receiving
messages;
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The Message Context class
The assumptions common to all security protocols go into
the Message Context class, MsgContext. This class:

• Represents the state of the system at a point in time;

• Axiomatizes the effects of sending and receiving
messages;

• Restricts the possible actions of the participants.
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MsgContext: sample methods

MsgContext : CLASSSPEC
METHOD

� � � �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]

The basic methods represent

• the flow of time ( � �� �),
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MsgContext : CLASSSPEC
METHOD

� � � �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]

The basic methods represent

• the flow of time ( � �� �),

• the action occurring ( �� � � � �),
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MsgContext: sample methods

MsgContext : CLASSSPEC
METHOD

� � � �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]

The basic methods represent

• the flow of time ( � �� �),

• the action occurring ( �� � � � �),

• the state of the principals’ knowledge (

	 �� 
 �).
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MsgContext: sample assertion

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]
ASSERTION

�� � ��� �(x) = idle⇒
∀(P : Princ) :

x.

	 �� 
 �(P ) = x. � �� �

.

	 �� 
 �(P )

Knowledge does not change if idle.
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MsgContext: sample theorem

MsgContext : CLASSSPEC
METHOD

� �� �

: Self → Self

�� � ��� � : Self → {idle, sent, received}	 �� 
 � : Self ×Princ→ [Message→ Bool]
ASSERTION

�� � ��� �(x) = idle⇒
∀(P : Princ) :

x.

	 �� 
 �(P ) = x. � �� �

.

	 �� 
 �(P )
THEOREM
∀(P : Princ,m : Message) :

x.

	 �� 
 �(P )(m)⇒
x. � �� �

.

	 �� 
 �(P )(m).
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Inheritance
The CCSL language supports class inheritance.

We use:
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Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

• A generic MsgContext class
• general model for learning, message passing, etc.
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Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

• A generic MsgContext class
• general model for learning, message passing, etc.
• our security model assumptions.
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Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

Needham Schroeder

08jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

Bilateral Key Exchange

KS

• A generic MsgContext class

• Specific protocol classes containing:
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Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

Needham Schroeder

08jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

Bilateral Key Exchange

KS

• A generic MsgContext class

• Specific protocol classes containing:
• Axioms describing the protocol,

The Coinductive Approach to Verifying Cryptographic Protocols – p.23/27



Inheritance
The CCSL language supports class inheritance.
We use:

MsgContext

Needham Schroeder

08jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

Bilateral Key Exchange

KS

• A generic MsgContext class

• Specific protocol classes containing:
• Axioms describing the protocol,
• Correctness theorems.
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Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?
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Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
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Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;
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Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;
• no one else knows K.

All of this is easily expressible in CCSL, using our
MsgContext protocol.
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Correctness
So, what do we want to prove about a protocol (say,
Bilateral Key Exchange)?

We want to prove:

If A invites B to start the protocol and A and B
respond as the protocol dictates then there is a key
K such that
• eventually A and B know K;
• eventually A and B believe they each know K;
• no one else knows K.

Admittedly, proving it is not so easy.
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Paulson’s Inductive Approach
Lawrence Paulson uses a similar approach to analyzing
security protocols.
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Paulson’s Inductive Approach
Lawrence Paulson uses a similar approach to analyzing
security protocols.
However, his models are inherently algebraic, rather than
coalgebraic.
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Paulson’s Inductive Approach
Lawrence Paulson uses a similar approach to analyzing
security protocols.
However, his models are inherently algebraic, rather than
coalgebraic.
He considers the set of finite traces for a protocol. This set
can be given by a least fixed point construction, i.e., by an
initial algebra.
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Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and . . .
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Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and

• if P (evs), then P (ev # evs).
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Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and

• if P (evs), then P (ev # evs).

This is analogous to showing that P is an invariant, in the
coalgebraic sense.
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Paulson’s Inductive Approach
His basic proof principle is induction. To prove P always
holds, he shows

• P [] holds and

• if P (evs), then P (ev # evs).

This is analogous to showing that P is an invariant, in the
coalgebraic sense.

The main theoretical difference is that we consider infinite
traces as models, while Paulson considers finite traces.
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Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s

Separate
specification
language (CCSL)

Specified directly in
Isabelle
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Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

Temporal reasoning Inductive reasoning
Inheritance No inheritance

As well, our specification places fewer restrictions on the
behavior of the participants . . .
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Comparison
There are a number of practical differences in Paulson’s
work and our own.

Our approach Paulson’s
Separate specification
language (CCSL)

Specified directly in
Isabelle

Temporal reasoning Inductive reasoning
Inheritance No inheritance

As well, our specification places fewer restrictions on the
behavior of the participants but we pay for this generality!
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Summary
Summarizing:
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Prove the correctness conditions.
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Summary
Summarizing:

Specify a protocol in CCSL, using temporal operators.

The protocol inherits from a general MsgContext class.

Compile the CCSL specification into a PVS theory.

Prove the correctness conditions.

More on CCSL can be found here:
http://wwwtcs.inf.tu-dresden.de/∼tews/ccsl/
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