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Equationsin Set'

Let I':Set—Set be a polynomial functor and let X € Set
be regular projective (means nothing in Set!).

F
Set 1 Set'
U
An over X IS apair t; =x ty of elements of

U F X, the carrier of the free algebra over X.

(3]
1t:>>UFX
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Equationsin Set'

An over X IS apair t; =x ty of elements of
U F X, the carrier of the free algebra over X.

We say (A, o) =t =x to iff forevery o: X—A, we
have o o t{ = o0 o t».

i1

l—=UFX

to
5l

U(A, a)
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Equationsin Set'

An over X IS apair t; =x ty of elements of
U F X, the carrier of the free algebra over X.

Wesay (A, a) Et; =x ty iffforevery o:F'X~(A, ),
we have o o t; = 0 o ts.

i1

l—=UFX

to
5l

U(A, a)
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Equationsin Set'

An over X IS apair t; =x ty of elements of
U F X, the carrier of the free algebra over X.

Let (), v) be the coequalizer of the congruence generated
by t1 =x 0o.

(A, a) =t =x tyiff forevery o: FX—(A, a), thereis a
homomorphism & making the diagram below commute.

7
Fl—=FX —{(Q, V)

t2
5 T
£ 0

(4, a)
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Equationsin Set'

An over X IS apair t; =x ty of elements of
U F X, the carrier of the free algebra over X.

Let (), v) be the coequalizer of the congruence generated
by t1 =x 0o.

(A, a) =t =x tyiff forevery o: FX—(A, a), thereis a
homomorphism & making the diagram below commute.

~

(3]
Fl—=FX —{(Q, V)

t2
5 T
£ 0

(4, a)

Hom (X, A) = Hom (F X, (A, a)) = Hom((Q, 1), (A, a))
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Conjunctions of equations

Let S be a set of equations over X, I.e.,
SCUFX xUFX.
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Conjunctions of equations

Let S be a set of equations over X, I.e.,

SCUFX xUFX.

Write (A, a) Ex A\ S justincase (A, a) | t; =x t, for
all t{ =x t, € S.
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Conjunctions of equations

Let S be a set of equations over X, I.e.,
SCUFX xUFX.
Let (@, v) be the coequalizer of the congruence generated
by
S—=UFX

(A, a) =x )\ Siffforeveryo: FX—(A, ), thereisa
homomorphism & making the diagram below commute.

FS—=FX——(Q, V)

5l P
£z 0

(4, a)
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Conjunctions of equations

Let S be a set of equations over X, I.e.,
SCUFX xUFX.

Let V C Set' and define
EqTh(V)={S|dreg. proj. X .S CUFX x UFX,

VE=x A\ SH
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| mplications of equations

Let S, T be sets of equations over X.
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| mplications of equations

Let S, T be sets of equations over X.

Write (A, o) =x A\S = /\ T justin case, for every
o:FX—(A, o), If 6 coequalizes S—=UFX ,theno
also coequalizes T—=UF X .
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| mplications of equations

Let S, T be sets of equations over X.
Let (P, p), (@, v) be the coequalizer of the congruence
generated by S, S U T/, resp.
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| mplications of equations

Let S, T be sets of equations over X.
Let (P, p), (@, v) be the coequalizer of the congruence

generated by S, S U T/, resp.

(A, o)y Ex NS = AT iffforevery f:(P, p)—(A, a),
there is a morphism ¢: (@, v)—~(A, ) making the
diagram below commute.

(P, 1) |
/ \
Fx )

@, v)
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| mplications of equations

Let S, T be sets of equations over X.

Let (P, p), (@, v) be the coequalizer of the congruence
generated by S, S U T/, resp.

Equivalently, (A, o) = A\S = A T justin case

Hom((P, p), (A, a)) = Hom((Q, v), (A, a)).
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| mplications of equations

Let S, T be sets of equations over X.
Define

ImpEqTh(V) = {(S, T') | 3 reg. proj. X .
STCUFX x UFX,

V =x /\S:>/\T}
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| mplications of equations

Let S, T be sets of equations over X.
Define

ImpEqTh(V) = {(S, T') | 3 reg. proj. X .
STCUFX x UFX,

V =x /\S:>/\T}

EqTh(V) C ImpEqTh(V), via

S — /\(/):>/\S.
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Negations of equations

Let S be a set of equations over X.
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Negations of equations

Let S be a set of equations over X.
Write (A, o) =x — /\ S just in case for every
o:FX—(A, a),thereisat; =x t, € S such that

ooty # oots.
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Negations of equations

Let S be a set of equations over X.
Write (A, o) =x — /\ S just in case for every
o:FX—(A, a),thereisat; =x t, € S such that

ooty # oots.

Let (P, p) be the coequalizer of the congruence generated
by S.
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Negations of equations

Let S be a set of equations over X.
Write (A, o) =x — /\ S just in case for every
o:FX—(A, a),thereisat; =x t, € S such that

ooty # oots.

Let (P, p) be the coequalizer of the congruence generated
by S.

(A, a) =x = /\ S just in case there is no homomorphism
(P, p)—~(A, a), l.e.,

Hom (({P, p), (A, «a)) = 0.
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Negations of equations

Let S be a set of equations over X.
Define

HornEqTh(V) = ImpEqTh(V)U
{S|dreg.proj. X .SCUFX xUFX,

V Ex -\ S}
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Negations of equations

Let S be a set of equations over X.
Define

HornEqTh(V) = ImpEqTh(V)U

{S|dreg.proj. X .SCUFX xUFX,
V Ex -\ S}
Let S C HornEqTh (= HornEqTh())). Define

Sat(S) = {(4, a) € Set" | (4, a) = S}.
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The H, S, P, P" operators

We define the following operators

SubCat(Set' )— SubCat(Set").
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The H, S, P, P" operators

We define the following operators

SubCat(Set' )— SubCat(Set").

HV = {(B, 8) € Set' |3V 5 (C, v)—=(B, 8)}
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The H, S, P, P" operators

We define the following operators

SubCat(Set' )— SubCat(Set").

HV = {(B, B) € Set"
SV = {(B, B) € Set"

V> (C,v)—=(B, 8)}
(B, B)—(C, v) € V}



The H, S, P, P" operators

We define the following operators

SubCat(Set' )— SubCat(Set").

HV = {(B, B) € Set' |3V 2 (C, v)—(B, B)}
SV = {(B, B8) € Set" | 3(B, B)~—(C, v) € V}
PV = {<B, 5> S Set’ 3{<A@, Oé@'>}@'€] C V.

<B7 6> H<A27 az>}




The H, S, P, P" operators

HV = {{
SV = {{
PV = {{

5) € Sett
c Set'
5) € Sett

3V 3 (C, v)—(B, B)}
(B, B)—(C, 7) € V}
I{(A4i, a;) }ier C V.

<Bv 6> = H <AZ7 O‘Z>}
PV = {<B, 5> S Set’ ’ 3{<A@, Oé@'>}@'€] C V.

(B, 8) =[] (As a). T+ 0}



Thevariety theorems

Let I" be polynomial and V C Set'.

~
Theorem (Birkhoff variety theorem).

Sat(EqThV) = HSPV
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Thevariety theorems

Let I" be polynomial and V C Set'.

/Theorem (Birkhoff variety theorem).
Sat(EqThV) = HSPV

Theorem (Quasivariety theorem).

Sat(ImpEqThV) = SPV
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Thevariety theorems

Let I" be polynomial and V C Set'.
/Theorem (Birkhoff variety theorem).

Sat(EqTh V) = HSPV

Theorem (Quasivariety theorem).
Sat(ImpEqThV) = SPV

Theorem (Horn variety theorem).

Sat(HornEqThV) = SPTV
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Closure operatorsfor coalgebras

Recall the algebra operators.

HV = {(B, p) € &"
SV ={(B, B)e&"
PV = {(B, 8) € &

V> (C,v)—(B, B)}

(B, B)—(C, 7) € V}
I{(A;, ;) }icr C V.

<Bv 5> = H <A@7 O‘@>}
PtV = {<B, 6> ~ gI’ ‘ EI{<A7,7 Odi>}7;ej C V.

(B, 8) =[] (As, ). T+ 0}



Closure operatorsfor coalgebras

Each algebra operator yields a coalgebra operator.

HV = {(B, B) € & | 3V 3 (C, 7)~ (B, B)}

SV ={(B, B)e&"
PV = {(B, 8) € &

(B, B)—(C, v) € V}}
I{(A;, ;) }icr C V.

<Bv 5> = H <A@7 O‘@>}
PtV = {<B, 6> ~ gI’ ‘ EI{<A7,7 Odi>}7;ej C V.

(B, 8) =[] (As, ). T+ 0}



Closure operatorsfor coalgebras
Each algebra operator yields a coalgebra operator.
HV = {(B, 8) € & |3V 3 (C, 7)~—(B, B)}
SV ={(B, 8) € & | 3(B, )= (C, ) € V)
PV:{< 6> EgP ’EI{<A7,7 &Z>}Z61§V
<Bv 6> = H <A27 O‘z>}
PV = {<B, 6> = EF ’ El{<AZ, Oéi>}7;E] C V.

(B, 8) = [[(As ). T+ 0}




Closure operatorsfor coalgebras

Each algebra operator yields a coalgebra operator.

HV = {(B, ) € & | 3V 5 (C, 7)~—(B, B)}
§V={< , B) € &r | B, B)=—(C,v) € V}
PV = {(B, 8) € & | 3{{Ai, a;)}ie; TV .

<Bv 6> = Z<Az> O“&>}
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Closure operatorsfor coalgebras

Each algebra operator yields a coalgebra operator.

HV = {(B, §) € & |3V 3 (C. 7)~—(B. §)}
SV = {(B, B) € & | 3(B, 8)~—(C. ) € V}
PV = {< 6> = gf EI{<A7,7 Ozi>}i€[ g V.

) <Bv 6> = Z<Az> O“&>}
PTV = {<B, 6> c ér ’ El{<AZ, Ozi>}i€[ C V.

(B, B) =S (A, ), T+ 0}




Closure operatorsfor coalgebras

Each algebra operator yields a coalgebra operator.
SV ={(B, 8) € & |3V 3 (C, v)=—(B, )}
HV ={(B, p) € & | I(B, B)=—(C, 1) € V}
YV ={(B, B) € | H(Ai, i) }tier C V.

<Bv 5> = Z <AZ7 O“&>}
Z+V — {<B, 6> = (SI‘ ‘ El{<AZ, Odi>}7;E[ g V.

(B, B) =3 (A, ), 140}




Dualizing equations

Consider again equations in Set'. We consider the
mapping

(S~ ~UFX x UFX} - {FX—+(Q, )},

and dualize the notion of sets of equations by dualizing
quotients of free algebras.
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Dualizing equations

Consider again equations in Set'. We consider the

mapping
EqThy — Quot(FX),

and dualize the notion of sets of equations by dualizing
quotients of free algebras.
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Dualizing equations

Consider again equations in Set'. We consider the
mapping

EqThy — Quot(FX),
and dualize the notion of sets of equations by dualizing

quotients of free algebras.
Returnto &r. Let £, I' be good (co-good?) and let H be

the right adjoint to U : &r—&, with counit e : U H —1.
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Dualizing equations

Returnto &r. Let £, I' be good and let A be the right
adjointto U :&r—&, with counit e :U H—1.

Let C' € £and (A, o) € &r. For any
C-coloring p: A—C of A, there exists a unigue
homomorphism p: (A, a)—HC making the diagram
below commute.

UHC

= 7

A—=C
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Dualizing equations

Return to &r. Let &, I' be good and let A be the right
adjointto U :&r—&, with counit e :U H—1.
A over C'Is a regular subobject o < UHC.
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Dualizing equations

Returnto &r. Let £, I' be good and let A be the right
adjointto U :&r—&, with counit e :U H—1.

A over C'Is a regular subobject o < UHC.
We write (A, a) =¢  iff for every coloring p: A—C' of
A, the adjoint transpose Up factors through .
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Dualizing equations

Return to &r. Let &, I' be good and let A be the right
adjointto U :&r—&, with counit e :U H—1.

A over C'Is a regular subobject o < UHC.
We write (A, a) =¢  iff for every coloring p: A—C' of

A, Im(Up) < .

In other words,
Hom (A, C) = Hom({A, «), HC') = Hom({A, «a),O¢).
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Dualizing equations

A over C'Is a regular subobject o < UHC'
We write (A, «) =¢ o iff for every coloring p: A—C' of
A, Im(Up) < ¢.

r

(A, a) =¢ @ justin case, however we paint the elements
of A, they “look like” elements of .
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Dualizing equations

A over C'Is a regular subobject o < UHC'
We write (A, «) =¢ o iff for every coloring p: A—C' of
A, Im(Up) < ¢.

We view coequations  as predicates over U HC'.
-

(A, a) =¢  iff, for every p: A—C', we have

Im(Up) .
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Conditional coequations

Letp, v <UHC.
We write (A, a) = ¢ = 1 just in case, for every p: A—C
such that Im(p) < ¢, we have Im(p) < 9.
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Conditional coequations

Letp, v <UHC.
We write (A, a) = ¢ = 1 just in case, for every p: A—C
such that Im(p) < ¢, we have Im(p) < 9.

C C

] ]

A—Ur—UHC = A—Upr—UHC
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Conditional coequations

Letp, v <UHC.

We write (A, a) = ¢ = 1 just in case, for every p: A—C
such that Im(p) < ¢, we have Im(p) < 9.

((

(A, a)— O ¢ factors through

A, a) E @ = 1 just in case every homomorphism

Y, 1.e.,

Hom((A, a),0¢) = Hom({A, a), Ov).
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Dualizing negations

Let o < UHC.
We write (A, a) = P just in case for every p: A—C', it is
the case Im(p) < o.
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Dualizing negations

Let o < UHC.
We write (A, a) = P just in case for every p: A—C', it is
the case Im(p) < o.

Equivalently, there is no homomorphism (A, a)— O o,
e,

Hom({A, a),O¢) = 0.
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Dualizing negations

Let p < UHC.

We write (A, a) = P just in case for every p: A—C', it is
the case Im(p) < o.

Equivalently, there is no homomorphism (A, a)— O o,
e,

Hom({A, a),O¢) = 0.

' No matter how we paint A, there iIs some elementa € A
that doesn’t land in .
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Dualizing negations

Let o < UHC.
We write (A, a) = P just in case for every p: A—C', it is
the case Im(p) < o.

' No matter how we paint A, there i1s some elementa € A
that doesn’t land In .

This does not mean that (A, o) = —¢! “Something
In A does not land In ¢,” Is not the same as, “Everything In
A does not land in ¢.”
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A few morethings...
Let V C &r.
CoeqTh(V) ={¢|dreg.inj. C.o <UHC,
V e ¢}
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A few morethings...
Let V C 51“-
CoeqTh(V) ={p|3dreg. inj. C.o <UHC,

V ¢ ¢}
ImpCoeqTh(V) ={p =1 |dreg.inj. C.p,» <UHC,

V Ec ¢ = ¢}
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A few morethings...

Let V C &r.
CoeqTh(V) ={p|dreg.inj. C. o <UHC,
V e ¢}
ImpCoeqTh(V) = {p = | 3reg. inj. C ., <UHC,
V Ec ¢ =1}

HomCoeqTh(V) = ImpCoeqTh(V)u
{#|3reg. inj. C.o <UHC, V |=c ¢}
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A few morethings...

Let V C &r.
CoeqTh(V) ={p|dreg.inj. C. o <UHC,
V e ¢}
ImpCoeqTh(V) = {p = | 3reg. inj. C ., <UHC,
V Ec ¢ =1}

HomCoeqTh(V) = ImpCoeqTh(V)u
{#|3reg. inj. C.o <UHC, V |=c ¢}

Let S C HornCoeqTh. Define
Sat(S) ={(A, a) € &r | (A, a) = S}
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The covariety theorems
Let £, I'begoodand V C €.

Theorem (Birkhoff covariety theorem).

Sat(CoeqThV) = SHYXV
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The covariety theorems
Let £, I'begoodand V C €.

Theorem (Birkhoff covariety theorem).
Sat(CoeqThV) = SHYXV

Theorem (Quasi-covariety theorem).

Sat(ImpCoeqThV) = HYV
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The covariety theorems

Let £, I'begoodand V C €.
KI‘heorem (Birkhoff covariety theorem).

Sat(CoeqThV) = SHYXV

Theorem (Quasi-covariety theorem).
Sat(ImpCoeqThV) = HYV

Theorem (Horn covariety theorem).

Sat(HornCoeqThV) = HY™V
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Some simple examples

Fix a set Z and consider I': Set—-Set where

I'X =7 x X.
Regard a I'-coalgebra (A, «) as a set of streams over Z

and let
hy:A—=Z
t, A—=A

denote the evident head and tail operations.
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Some simple examples

Fix a set Z and consider I': Set—-Set where

I'X =7 x X.
The following are Horn covarieties.

{(A, a) € Setr | da € A.t,(a) =a}.
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Some simple examples

Fix a set Z and consider I': Set—-Set where

I'X =7 x X.
The following are Horn covarieties.

{(A, a) € Setr |Ja € A.t,(a) = a}.
{(A, a) € Setr | A#£DandVa € Adn € N.t"(a) =
tatt(a)}.
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Some simple examples

Fix a set Z and consider I': Set—-Set where

I'X =7 x X.
The following are Horn covarieties.

{(A, a) € Setr | da € A.t,(a) =a}.

{(A, a) € Setr | A#£DandVa € Adn € N.t"(a) =
to "' (a)}.

{{(A, a) € Setr | A # D andVa € Adn € NVm >
n.heotl(a) =hyot?(a)}.
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Deter ministic automata and languages
Fix an alphabet Z. Let
[':Set——=Set

be the functor
X — 2x X
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Deter ministic automata and languages
Fix an alphabet Z. Let
[':Set——=Set

be the functor
X — 2x X

A I'-coalgebra (A, «) is an automaton accepting input
from Z and outputting either 0 or 1, where

out,(a) = m o afa)

trans,(a) = m o a(a)
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Deter ministic automata and languages

Let 0 € 7<% and define
eval,: A x T<¥—=A
by

eval,(a, () = a,

eval,(a, o % 1) = trans,(eval,(a, o))(z).

eval,(a, o) is the final state of the calculation beginning in
a With input o.
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Deter ministic automata and languages

Define
acc,: A—P(IT=%)

by
acc,(a) ={o € =% | out,oeval,(a,o) = 1}.

acc,(a) is the set of all words accepted by state a.

Horn Covarieties for Coalgebras — p.18/26



Deter ministic automata and languages
Fix a “language” £ C 7= and define

V,={(A, a) € Setr | da € A. acc,(a) = L}.
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Deter ministic automata and languages
Fix a “language” £ C 7= and define
V,={(A, a) € Setr | da € A. acc,(a) = L}.

V . I1s a Horn covariety.
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Deter ministic automata and languages
Fix a “language” £ C 7= and define
V,={(A, a) € Setr | da € A. acc,(a) = L}.

V . I1s a Horn covariety.
Explicitly: the class of all automata which have an initial

state accepting exactly £ i1s closed under codomains of epis
and non-empty coproducts. Furthermore, V. iIs definable
by a Horn coequation.

Horn Covarieties for Coalgebras — p.18/26



Deter ministic automata and languages
Fix a “language” £ C 7= and define
V,={(A, a) € Setr | da € A. acc,(a) = L}.

V . I1s a Horn covariety.
Indeed, let o < U H1 be the set

{ce UH1 | accyi(c) # L}.
Then (A, o) € V- just in case
Hom ({4, o), O¢) = 0.




M ore automata

Fix L C T<%.

1. Deterministic automata which have an accepting state
for L.
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M ore automata

Fix L C T<%.

1. Deterministic automata which have an accepting state
for L.

2. Non-deterministic automata which have a non-empty,
deterministic sub-automaton.
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M ore automata

Fix L C T<%.

1. Deterministic automata which have an accepting state
for L.

2. Non-deterministic automata which have a non-empty,
deterministic sub-automaton.

3. Non-deterministic automata which have a
deterministic sub-automata in (1).
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M ore automata

Fix L C T<%.

1. Deterministic automata which have an accepting state
for L.

2. Non-deterministic automata which have a non-empty,
deterministic sub-automaton.

3. Non-deterministic automata which have a
deterministic sub-automata in (1).

4. Etc. and so on.
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Cofreefor HX"V coalgebras

Let V C &r, C € £. Define
OC = {f:(A, a)—HC | (4, a) € V},

AC =\/{Im[|feOC}



Cofreefor HX"V coalgebras
Let V C &r, C € £. Define
OC = {f:(A, a)—HC | (A, a) € V},
AC =\/{Imf|feoC}

If ©C £ (), then AC'is i.e.,
AC € HYXTV;
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Cofreefor HX"V coalgebras

If ©C £ (), then AC'is i.e.,
AC € HXTV;

If (B, 8) € HXTV, then for every p: B—~C, there is a

unique homomorphism p: (B, 3)—AC' such that the
diagram below commutes.

- B

p

~

P

UAC>—>UHC—>C
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Cofreefor HX"V coalgebras

If ©C + ), then AC'is

If £ = Set (or any category in which each C' # 0 has a
global element) and V =£ 0, then every C' ## 0 has a cofree

for HX"V coalgebra.
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Cofreefor HX"V coalgebras

If ©C + ), then AC'is

If £ = Set (or any category in which each C' # 0 has a
global element) and V =£ 0, then every C' ## 0 has a cofree

for HX"V coalgebra.

In technical terms, we have
Indeed, It arises as the composition of an adjunction and

iy
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Behavioral classes

Consider the following operators.

RV = {(B, §) € & | 3(B, f)—=(A, a) € V}
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Behavioral classes
Consider the following operators.
RV ={(B, 8) € &r | I(B, f)—=(A, o) € V§
BV = {(B, () € & | 3 bisimulation
B<=—R—A€V}
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Behavioral classes
Consider the following operators.
RV ={(B, 8) € &r | I(B, f)—=(A, o) € V§
BV = {(B, () € & | 3 bisimulation
B<=—R—A€V}
QV ={(B, p) € &r |
1(B, 8)<~—(C—= (A, a) e V}
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Behavioral classes
Consider the following operators.
RV ={(B, 8) € &r | I(B, f)—=(A, o) € V§
BV = {(B, () € & | 3 bisimulation
B<=—R—A€V}
QV ={(B, p) € &r |
1(B, 8)<~—(C—= (A, a) e V}

RHV = BBV = QQV. I
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Behavioral classes
-

RHV = BBV = QQV.
If, In £, epis are stable under pullback, then also

RHV = BV = QV.
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Behavioral classes

RV = {(B, §) € & | 3(B, f)—=(A, a) € V}

a

Sat(CoeqThy, V) = RSHYXV
Sat(ImpCoeqThyy V) = RHYV
Sat(HornCoeqThy, V) = RHY™V
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Behavioral classes

RV = {(B, §) € & | 3(B, f)—=(A, a) € V}

a

Sat(CoeqThy; V) = RSHYV
Sat(ImpCoeqThyy V) = RHYV
Sat(HornCoeqThy, V) = RHY™V

Here, CoeqThz; V (ImpCoeqThyy V, HornCoeqThy, V,
resp.) denotes the (conditional, Horn, resp.) coequations
over 1 color satisfied by V.
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Outline

V1. Optimistic promissary note
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A slew of questions

“Logical” characterization of Horn covarieties
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A slew of questions

“Logical” characterization of Horn covarieties
Dual of Horn logic (modal operators)
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A slew of questions

“Logical” characterization of Horn covarieties
Dual of Horn logic (modal operators)
“Finitary” Horn covarieties
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A slew of questions

“Logical” characterization of Horn covarieties
Dual of Horn logic (modal operators)

“Finitary” Horn covarieties

Closure under codomains of arbitrary morphisms
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A slew of questions

“Logical” characterization of Horn covarieties
Dual of Horn logic (modal operators)

“Finitary” Horn covarieties

Closure under codomains of arbitrary morphisms
Generic other stuff that won’t fit in the margin
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