The Muddy Children: A logic for public announcement

Jesse Hughes

Technical University of Eindhoven

February 10, 2007

Hughes

The Muddy Children: A logic for public announcement

The muddy children Modal logics The epistemic operator A logic for public announcement

Outline

- 1 The muddy children
- 2 Modal logics
- 3 The epistemic operator
- 4 A logic for public announcement

The muddy children

Quincy

Prescott

Hughes

Baba: "At least one of you is muddy."

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

Hughes

The Muddy Children: A logic for public announcement

The muddy children
Modal logics
The epistemic operator
A logic for public announcement

The muddy children

Quincy

Prescott

Hughes

Baba: "Are you muddy?"

Quincy: "Aha! What if I wasn't muddy?"

Quincy: "Then Prescott would not have seen any muddy kids."

Quincy: "Prescott would have said 'yes' last time!"

Quincy: "I must be muddy."

The muddy children

Quincy

Prescott

Hughes

Baba: "Are you muddy?"

Quincy: "Yes."
Prescott: "Yes."

Hughes: "I don't know."

Hughes

The Muddy Children: A logic for public announcement

The muddy children Modal logics The epistemic operator A logic for public announcement

The muddy children

Quincy

Prescott

Hughes

When Baba said, "At least one kid is muddy," every kid knew that... <u>but</u> they didn't know that the other kids knew that!

Public announcements of φ tell you φ , everyone knows φ , everyone knows that everyone knows φ , . . .

Modal operators

A modal operator \square is a logical operator.

We use it to build new formulas from old.

If φ is a formula, then so is $\square \varphi$.

We use modal operators to express lots of concepts, including:

Necessarily φ . $\Box \varphi$ $\Diamond \varphi$ Possibly φ .

 φ will always be true. $G\varphi$ $F\varphi$ Eventually φ .

 φ is provable. Prov φ ?? φ is not refutable.

I know φ $K\varphi$?? I think φ is possible.

Each operator \square has a dual, $\lozenge = \neg \square \neg$.

Hughes

The Muddy Children: A logic for public announcement

The muddy children

Modal logics

The epistemic operator
A logic for public announcement

Kripke semantics

Models for modal logics are based on "possible world" semantics.

Let \mathcal{W} be a set of worlds with a graph.

Write $w \models P$ if P is true at world w.

$$\begin{array}{ll} w \models \varphi \wedge \psi & \text{iff} & w \models \varphi \text{ and } w \models \psi \\ w \models \varphi \vee \psi & \text{iff} & w \models \varphi \text{ or } w \models \psi \\ w \models \varphi \rightarrow \psi & \text{iff} & w \models \psi \text{ or } w \not\models \varphi \\ w \models \neg \varphi & \text{iff} & w \not\models \varphi \end{array}$$

$$w \models \Box \varphi$$
 iff for every $w \longrightarrow w'$, $w' \models \varphi$.

Modal axioms and frame conditions

Axioms on \square correspond to conditions on the graph.

Name	Axiom	Graph is
(D)	$\Box \varphi \to \Diamond \varphi$	serial
(M)	$\Box \varphi \to \varphi$	reflexive
(4)	$\Box \varphi \to \Box \Box \varphi$	transitive
(B)	$\varphi \to \Box \Diamond \varphi$	symmetric
(5)	$\Diamond \varphi \to \Box \Diamond \varphi$	euclidean

If \square satisfies (M), (4) and (B), then the graph is an equivalence relation.

- Write $w \frac{\alpha}{w} w'$.
- Don't bother to draw loops.

euclidean

Hughes

The Muddy Children: A logic for public announcement

The muddy children
Modal logics
The epistemic operator
A logic for public announcement

The epistemic operator

For each agent α , we introduce an operator K_{α} .

 $K_{\alpha}\varphi$ means " α knows φ ."

Each α has its own graph, too.

An edge $w - \frac{\alpha}{w} w' - w' - w'$ means " α can not distinguish w from w'." $w \models K_{\alpha}\varphi$ iff for every $w - \frac{\alpha}{w} w'$, $w' \models \varphi$.

More on K_{α}

Quincy

Prescott

Hughes

 $K_{\alpha}\varphi$ means " α knows φ ." What does $\neg K_{\alpha}\neg\varphi$ mean? α considers that φ is possible. What about $K_{\alpha}K_{\beta}\varphi$? α knows that β knows that φ . For instance, Quincy knows that Hughes knows that Prescott is muddy. In other words, $K_{Q}K_{H}(P)$ is muddy).

Hughes

The Muddy Children: A logic for public announcement

The muddy children
Modal logics
The epistemic operator
A logic for public announcement

Properties of K_{α}

Quincy

Prescott

Hughes

$$egin{aligned} {\sf K}_{lpha}arphi &
ightarrow arphi \ {\sf K}_{lpha}arphi &
ightarrow {\sf K}_{lpha} {\it K}_{lpha} {\it K} \ \lnot {\sf K}_{lpha}arphi &
ightarrow {\sf K}_{lpha} \lnot {\sf K}_{lpha} \lnot {\sf K}_{lpha} {\it V} \ {\sf K}_{lpha}(arphi
ightarrow \psi)
ightarrow ({\sf K}_{lpha}arphi
ightarrow {\sf K}_{lpha}\psi) \end{aligned}$$

knowledge is true positive introspection negative introspection distributivity

Universal and common knowledge

- Universal knowledge $(E\varphi)$:
 - Everyone knows φ .
 - No one-step paths outside of φ .
- Universal knowledge of universal knowledge $(EE\varphi)$:
 - ullet Everyone knows that everyone knows arphi.
 - No two-step paths outside of φ .
 - No one-step paths outside of universal knowledge.
- Common knowledge ($C\varphi$):
 - Everyone knows that everyone knows that...that everyone knows φ .
 - No paths out of φ .

Hughes

The Muddy Children: A logic for public announcement

The muddy children Modal logics The epistemic operator A logic for public announcement

Back to the kids

Eight possible worlds.

0 - clean

1 - muddy

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't.

World 110 is indistinguishable from 010.

Quincy's epistemic relation.

Prescott's relation.

And Hughes's relation.

Hughes

The Muddy Children: A logic for public announcement

The muddy children
Modal logics
The epistemic operator
A logic for public announcement

Dynamic features

What happens when someone announces φ ?

Everyone learns that φ was true when announced.

So the $\neg \varphi$ worlds are unimportant. Take 'em out! Edges, too!

Information reduces uncertainty by eliminating possibilities.

A model of possible models!

- Announcing φ changes the model.
- $\bullet \ \ \mbox{Announcing} \ \psi \ \mbox{changes it} \\ \ \mbox{another way}.$
- Get a transition system on models.
- Another Kripke frame!

Hughes

The Muddy Children: A logic for public announcement

The muddy children
Modal logics
The epistemic operator
A logic for public announcement

Resolving the muddy children

Baba: "At least one of you is muddy."

World 000 is inconsistent with this announcement.

We remove it from the model.

Before $w_{110} \models E\varphi$.

Now $w_{110} \models C\varphi$.

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

Remove world 100! Remove world 010! Remove world 001!

A much simpler model!

Hughes

The Muddy Children: A logic for public announcement

The muddy children
Modal logics
The epistemic operator
A logic for public announcement

Resolving the muddy children

110

But now:

 $w_{110} \models K_Q("Q \text{ is muddy}")!$

Baba: "Are you muddy?"

Quincy: "Yes!"
Prescott: "Yes!"

Hughes: "I don't know."

Quincy knows Quincy is muddy:

remove 011 and 111.

Prescott knows Prescott is muddy: remove 111 and 101.

Resolving the muddy children

110

Baba: "Are you muddy?"

Quincy: "Yes!" Prescott: "Yes!" Hughes: "No!"

Hughes

The Muddy Children: A logic for public announcement

The muddy children Modal logics The epistemic operator A logic for public announcement

References

- Stanford Encyclopedia of Philosophy.
 http://plato.stanford.edu/entries/logic-modal/
- Benthem, J. v. "Language, logic, and communication". In Logic in Action, J. van Benthem, et al. ILLC, 2001.
- Benthem, J. v. "One is a Lonely Number".
 http://staff.science.uva.nl/~johan/Muenster.pdf