The Muddy Children: A logic for public announcement

Jesse Hughes

Eindhoven University of Technology

February 16, 2007

イロン イヨン イヨン イヨン

Outline

Э

Outline

・ロト ・回ト ・ヨト ・ヨト

æ

2 Modal logics

3 The epistemic operator

イロン 不同と 不同と 不同と

æ

2 Modal logics

- 3 The epistemic operator
- A logic for public announcement

イロト イヨト イヨト イヨト

Outline

2 Modal logics

- 3 The epistemic operator
- A logic for public announcement

イロン 不同と 不同と 不同と

The muddy children

Quincy

Hughes The Muddy Children: A logic for public announcement

・ロン ・回 と ・ ヨン ・ ヨン

æ

The muddy children

Quincy

Prescott

・ロン ・四と ・ヨン ・ヨン

æ

The muddy children

Quincy

Prescott

Hughes

・ロン ・四と ・ヨン ・ヨン

Э

The muddy children

Baba: "At least one of you is muddy."

イロン イヨン イヨン イヨン

The muddy children

Baba: "At least one of you is muddy." Baba: "Are you muddy?"

イロト イヨト イヨト イヨト

The muddy children

Baba: "At least one of you is muddy." Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

< 🗇 🕨

A B K A B K

The muddy children

Baba: "At least one of you is muddy." Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

< 4 P >

A B K A B K

The muddy children

Baba: "At least one of you is muddy." Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

< 🗇 🕨

A B K A B K

The muddy children

Baba: "At least one of you is muddy." Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

A ■

- E - - E -

The muddy children

Baba: "Are you muddy?"

イロン イヨン イヨン イヨン

æ

The muddy children

Baba: "Are you muddy?" Quincy: "Aha! What if I <u>wasn't</u> muddy?"

イロト イヨト イヨト イヨト

The muddy children

Baba: "Are you muddy?" Quincy: "Aha! What if I <u>wasn't</u> muddy?" Quincy: "Then Prescott would not have seen any muddy kids."

イロト イヨト イヨト イヨト

The muddy children

- Baba: "Are you muddy?"
- Quincy: "Aha! What if I wasn't muddy?"
- Quincy: "Then Prescott would not have seen any muddy kids."
- Quincy: "Prescott would have said 'yes' last time!"

イロト イポト イヨト イヨト

The muddy children

Baba: "Are you muddy?"

- Quincy: "Aha! What if I wasn't muddy?"
- Quincy: "Then Prescott would not have seen any muddy kids."
- Quincy: "Prescott would have said 'yes' last time!"

Quincy: "I must be muddy."

イロト イポト イヨト イヨト

The muddy children

Hughes

イロト イヨト イヨト イヨト

Quincy

Prescott

Baba: "Are you muddy?" Quincy: "Yes." Prescott: "Yes." Hughes: "I don't know."

The muddy children

When Baba said, "At least one kid is muddy," every kid knew that...

イロン イヨン イヨン イヨン

The muddy children

When Baba said, "At least one kid is muddy," every kid knew that... <u>but</u> they didn't know that the other kids knew that!

イロト イポト イヨト イヨト

The muddy children

When Baba said, "At least one kid is muddy," every kid knew that... <u>but</u> they didn't know that the other kids knew that!

Public announcements of φ tell you φ , everyone knows φ , everyone knows that everyone knows φ , ...

イロト イポト イヨト イヨト

Outline

The muddy children

2 Modal logics

- 3 The epistemic operator
- 4 A logic for public announcement

イロン 不同と 不同と 不同と

Modal operators

A modal operator \Box is a logical operator.

イロン 不同と 不同と 不同と

æ

Modal operators

A modal operator \Box is a logical operator. We use it to build new formulas from old.

イロト イヨト イヨト イヨト

э

Modal operators

A <u>modal operator</u> \Box is a <u>logical operator</u>. We use it to build new formulas from old. If φ is a formula, then so is $\Box \varphi$.

イロト イヨト イヨト イヨト

Modal operators

A modal operator \Box is a logical operator.

We use it to build new formulas from old.

If φ is a formula, then so is $\Box \varphi$.

We use modal operators to express lots of concepts, including: Necessarily φ . $\Box \varphi$

イロト イポト イヨト イヨト

Modal operators

A modal operator \Box is a logical operator.

We use it to build new formulas from old.

If φ is a formula, then so is $\Box \varphi$.

We use modal operators to express lots of concepts, including:

Necessarily φ . $\Box \varphi$

 φ will always be true. $G\varphi$

イロト イポト イヨト イヨト

- A modal operator \square is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
- Necessarily φ . $\Box \varphi$ φ will always be true. $G \varphi$
- φ is provable. Prov φ

イロト イポト イヨト イヨト

- A modal operator \square is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
 - Necessarily φ . $\Box \varphi$
 - φ will always be true. $G\varphi$
 - φ is provable. Prov φ
 - It ought to be φ . $O\varphi$

イロト イポト イヨト イヨト

- A modal operator \square is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
- Necessarily φ . $\Box \varphi$ φ will always be true. $G \varphi$ φ is provable.Prov φ It ought to be φ . $O \varphi$ I know φ . $K \varphi$

イロト イポト イヨト イヨト

- A modal operator \Box is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
- Necessarily φ . $\Box \varphi$ $\Diamond \varphi$ Possibly φ . φ will always be true. $G \varphi$
 - φ is provable. Prov φ
 - It ought to be φ . $O\varphi$
 - I know φ . $K\varphi$

Each operator \Box has a dual, $\Diamond = \neg \Box \neg$.

イロト イポト イヨト イヨト

- A modal operator \square is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
 - Necessarily φ . $\Box \varphi \qquad \Diamond \varphi$ Possibly φ .
 - φ will always be true. $G\varphi$ F φ Eventually φ .
 - φ is provable. Prov φ
 - It ought to be φ . $O\varphi$
 - I know φ . $K\varphi$

Each operator \Box has a dual, $\Diamond = \neg \Box \neg$.

イロト イポト イヨト イヨト

- A modal operator \Box is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
 - Necessarily φ . $\Box \varphi$ $\Diamond \varphi$ Possibly φ .
 - φ will always be true. $G\varphi$ $F\varphi$ Eventually φ .
- Prov φ ?? φ is not refutable. φ is provable.
- It ought to be φ . $O\varphi$
- $K\varphi$ I know φ .

Each operator \Box has a dual, $\Diamond = \neg \Box \neg$.

イロト イポト イヨト イヨト
Modal operators

- A modal operator \square is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
 - Necessarily φ . $\Box \varphi \qquad \Diamond \varphi$ Possibly φ .
 - φ will always be true. $G\varphi$ $F\varphi$ Eventually φ .
 - φ is provable. Prov φ ?? φ is not refutable.
 - It ought to be φ . $O\varphi$ $P\varphi$ φ is permitted. I know φ . $K\varphi$

Each operator \Box has a dual, $\Diamond = \neg \Box \neg$.

イロト イポト イヨト イヨト

Modal operators

- A modal operator \square is a logical operator.
- We use it to build new formulas from old.
- If φ is a formula, then so is $\Box \varphi$.
- We use modal operators to express lots of concepts, including:
 - Necessarily φ . $\Box \varphi \qquad \Diamond \varphi$ Possibly φ .
 - φ will always be true. $G\varphi$ $F\varphi$ Eventually φ .
 - φ is provable. Prov φ ?? φ is not refutable.
 - It ought to be φ . $O\varphi$ $P\varphi$ φ is permitted.
 - I know φ . $K\varphi$?? I think φ is possible.

Each operator \Box has a dual, $\Diamond = \neg \Box \neg$.

ヘロン 人間 とくほど くほとう

Kripke semantics

Models for modal logics are based on "possible world" semantics.

・ロト ・回ト ・ヨト ・ヨト

æ

Kripke semantics

Models for modal logics are based on "possible world" semantics. Let \mathcal{W} be a set of worlds with a graph.

< 1[™] >

Kripke semantics

Models for modal logics are based on "possible world" semantics. Let \mathcal{W} be a set of worlds with a graph.

Write $w \models P$ if P is true at world w.

< 1[™] >

- - E - E

- ∢ ≣ >

Kripke semantics

Models for modal logics are based on "possible world" semantics. Let $\mathcal W$ be a set of worlds with a graph.

Write $w \models P$ if P is true at world w.

$$\begin{array}{ll} w \models \varphi \land \psi & \text{iff} & w \models \varphi \text{ and } w \models \psi \\ w \models \varphi \lor \psi & \text{iff} & w \models \varphi \text{ or } w \models \psi \\ w \models \varphi \rightarrow \psi & \text{iff} & w \models \psi \text{ or } w \not\models \varphi \\ w \models \neg \varphi & \text{iff} & w \not\models \varphi \end{array}$$

< 1[™] >

→ Ξ →

- ∢ ≣ >

Kripke semantics

Models for modal logics are based on "possible world" semantics. Let $\mathcal W$ be a set of worlds with a graph.

Write $w \models P$ if P is true at world w.

$$w \models \varphi \land \psi \quad \text{iff} \quad w \models \varphi \text{ and } w \models \psi$$
$$w \models \varphi \lor \psi \quad \text{iff} \quad w \models \varphi \text{ or } w \models \psi$$
$$w \models \varphi \rightarrow \psi \quad \text{iff} \quad w \models \psi \text{ or } w \not\models \varphi$$
$$w \models \neg \varphi \quad \text{iff} \quad w \not\models \varphi$$
$$w \models \neg \varphi \quad \text{iff for every } w \longrightarrow w',$$

 $w' \models \varphi$.

- 4 回 2 - 4 □ 2 - 4 □

Kripke semantics

Models for modal logics are based on "possible world" semantics. Let $\mathcal W$ be a set of worlds with a graph.

Write $w \models P$ if P is true at world w.

$$w \models \varphi \land \psi \quad \text{iff} \quad w \models \varphi \text{ and } w \models \psi$$

$$w \models \varphi \lor \psi \quad \text{iff} \quad w \models \varphi \text{ or } w \models \psi$$

$$w \models \varphi \rightarrow \psi \quad \text{iff} \quad w \models \psi \text{ or } w \not\models \varphi$$

$$w \models \neg \varphi \quad \text{iff} \quad w \not\models \varphi$$

$$w \models \Box \varphi \text{ iff for every } w \longrightarrow w',$$

$$w' \models \varphi.$$

$$w \models \Diamond \varphi \text{ iff there is } w \longrightarrow w'$$
such that $w' \models \varphi$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

NameAxiomGraph is...(D) $\Box \varphi \rightarrow \Diamond \varphi$ serial

イロン イヨン イヨン イヨン

æ

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

NameAxiomGraph is...(D) $\Box \varphi \rightarrow \Diamond \varphi$ serial(M) $\Box \varphi \rightarrow \varphi$ reflexive

イロン イヨン イヨン イヨン

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

NameAxiomGraph is...(D) $\Box \varphi \rightarrow \Diamond \varphi$ serial(M) $\Box \varphi \rightarrow \varphi$ reflexive(4) $\Box \varphi \rightarrow \Box \Box \varphi$ transitive

・ロト ・回ト ・ヨト ・ヨト

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

NameAxiomGraph is...(D) $\Box \varphi \rightarrow \Diamond \varphi$ serial(M) $\Box \varphi \rightarrow \varphi$ reflexive(4) $\Box \varphi \rightarrow \Box \Box \varphi$ transitive(B) $\varphi \rightarrow \Box \Diamond \varphi$ symmetric

イロン イヨン イヨン イヨン

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

Name Axiom Graph is... (D) $\Box \varphi \to \Diamond \varphi$ serial (M) $\Box \varphi \to \varphi$ reflexive (4) $\Box \varphi \to \Box \Box \varphi$ transitive (B) $\varphi \to \Box \Diamond \varphi$ symmetric $\Diamond \varphi \to \Box \Diamond \varphi$ (5)euclidean

・ロト ・回ト ・ヨト ・ヨト

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

Name Axiom Graph is... (D) $\Box \varphi \to \Diamond \varphi$ serial $\Box \varphi \to \varphi$ (M) reflexive (4) $\Box \varphi \to \Box \Box \varphi$ transitive (B) $\varphi \to \Box \Diamond \varphi$ symmetric (5) $\Diamond \varphi \to \Box \Diamond \varphi$ euclidean

If \Box satisfies (M), (4) and (B), then the graph is an equivalence relation.

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

NameAxiomGraph is...(D) $\Box \varphi \rightarrow \Diamond \varphi$ serial(M) $\Box \varphi \rightarrow \varphi$ reflexive(4) $\Box \varphi \rightarrow \Box \Box \varphi$ transitive(B) $\varphi \rightarrow \Box \Diamond \varphi$ symmetric(5) $\Diamond \varphi \rightarrow \Box \Diamond \varphi$ euclidean

If \Box satisfies (M), (4) and (B), then the graph is an equivalence relation.

reflexive transitive symmetric euclidean

serial

• Write w - w'.

イロン イヨン イヨン イヨン

Modal axioms and frame conditions

Axioms on \Box correspond to conditions on the graph.

NameAxiomGraph is...(D) $\Box \varphi \rightarrow \Diamond \varphi$ serial(M) $\Box \varphi \rightarrow \varphi$ reflexive(4) $\Box \varphi \rightarrow \Box \Box \varphi$ transitive(B) $\varphi \rightarrow \Box \Diamond \varphi$ symmetric(5) $\Diamond \varphi \rightarrow \Box \Diamond \varphi$ euclidean

If \Box satisfies (M), (4) and (B), then the graph is an equivalence relation.

- Write *w w*'.
- Don't bother to draw loops.

イロト イヨト イヨト イヨト

Outline

The muddy children

2 Modal logics

- 3 The epistemic operator
- A logic for public announcement

イロン 不同と 不同と 不同と

The epistemic operator

For each agent α , we introduce an operator K_{α} .

< 🗇 🕨

< ∃ >

The epistemic operator

For each agent α , we introduce an operator K_{α} . $K_{\alpha}\varphi$ means " α knows φ ."

< 1[™] >

< ∃ >

The epistemic operator

For each agent α , we introduce an operator K_{α} . $K_{\alpha}\varphi$ means " α knows φ ." Each α has its own graph, too.

The epistemic operator

For each agent α , we introduce an operator K_{α} . $K_{\alpha}\varphi$ means " α knows φ ." Each α has its own graph, too. An edge $w - \frac{\alpha}{2} w'$ means " α can not distinguish w from w'."

The epistemic operator

For each agent α , we introduce an operator K_{α} . $K_{\alpha}\varphi \text{ means } ``\alpha \text{ knows } \varphi.''$ Each α has its own graph, too. An edge $w \xrightarrow{\alpha} w' \text{ means } ``\alpha \text{ can not distinguish } w \text{ from } w'.''$ $w \models K_{\alpha}\varphi \text{ iff for every } w \xrightarrow{\alpha} w', w' \models \varphi.$

イロト イポト イヨト イヨト

More on K_{α}

 $K_{\alpha}\varphi$ means " α knows φ ."

æ

More on K_{α}

 $K_{\alpha}\varphi$ means " α knows φ ." What does $\neg K_{\alpha}\neg\varphi$ mean?

・ロン ・回と ・ヨン・

æ

More on K_{α}

 $K_{\alpha}\varphi$ means " α knows φ ." What does $\neg K_{\alpha}\neg\varphi$ mean? α considers that φ is possible.

イロン イヨン イヨン イヨン

More on K_{α}

 $K_{\alpha}\varphi$ means " α knows φ ." What does $\neg K_{\alpha}\neg\varphi$ mean? α considers that φ is possible. What about $K_{\alpha}K_{\beta}\varphi$?

イロン イヨン イヨン イヨン

More on K_{α}

 $K_{\alpha}\varphi$ means " α knows φ ." What does $\neg K_{\alpha}\neg\varphi$ mean? α considers that φ is possible. What about $K_{\alpha}K_{\beta}\varphi$? α knows that β knows that φ .

・ロン ・聞と ・ほと ・ほと

More on K_{α}

 $K_{\alpha}\varphi \text{ means}$ " α knows φ ." What does $\neg K_{\alpha}\neg\varphi$ mean? α considers that φ is possible. What about $K_{\alpha}K_{\beta}\varphi$? α knows that β knows that φ . For instance, Quincy knows that Hughes knows that Prescott is muddy.

・ロン ・聞と ・ほと ・ほと

More on K_{α}

・ロン ・聞と ・ほと ・ほと

Properties of K_{α}

Properties of K_{α}

Quincy

Prescott

Hughes

・ロン ・回と ・ヨン ・ヨン

æ

 $\begin{array}{c} {\sf K}_{\alpha}\varphi \to \varphi \\ {\sf K}_{\alpha}\varphi \to {\sf K}_{\alpha}{\sf K}_{\alpha}\varphi \end{array}$

knowledge is true positive introspection

Properties of K_{α}

Quincy

Prescott

Hughes

・ロン ・回と ・ヨン・

æ

$$egin{array}{c} {\cal K}_lpha arphi
ightarrow arphi \ {\cal K}_lpha arphi
ightarrow {\cal K}_lpha {\cal G}
ightarrow {\cal K}_lpha {\cal K}_lpha {\cal G} \ {}^{-}{\cal K}_lpha {\cal G}
ightarrow {\cal K}_lpha {\cal G} \ {}^{-}{\cal K} \ {}^{-}{-}{\cal K} \ {}^{-}{\cal K} \ {}^{-}{-}{\cal K} \ {}^{-}{\cal K} \ {}^{-}{-}{\cal K} \ {}^{-}{\cal K} \ {}^{$$

knowledge is true positive introspection negative introspection

Properties of K_{α}

Quincy

Prescott

Hughes

・ロン ・回と ・ヨン・

 $\begin{array}{c} \mathsf{K}_{\alpha}\varphi \to \varphi \\ \mathsf{K}_{\alpha}\varphi \to \mathsf{K}_{\alpha}\mathsf{K}_{\alpha}\varphi \\ \neg \mathsf{K}_{\alpha}\varphi \to \mathsf{K}_{\alpha}\neg \mathsf{K}_{\alpha}\varphi \\ \mathsf{K}_{\alpha}(\varphi \to \psi) \to (\mathsf{K}_{\alpha}\varphi \to \mathsf{K}_{\alpha}\psi) \end{array}$

knowledge is true positive introspection negative introspection distributivity

Universal and common knowledge

イロン イヨン イヨン イヨン

æ

Universal and common knowledge

- Universal knowledge $(E\varphi)$:
 - Everyone knows φ .
 - No one-step paths outside of φ .

イロト イヨト イヨト イヨト

Universal and common knowledge

• Universal knowledge $(E\varphi)$:

- Everyone knows φ .
- No one-step paths outside of φ .
- Universal knowledge of universal knowledge (*EE*φ):
 - Everyone knows that everyone knows φ .
 - No two-step paths outside of φ .
 - No one-step paths outside of universal knowledge.

Universal and common knowledge

• Universal knowledge $(E\varphi)$:

- Everyone knows φ .
- No one-step paths outside of φ .
- Universal knowledge of universal knowledge (*EE*φ):
 - Everyone knows that everyone knows φ .
 - No two-step paths outside of φ .
 - No one-step paths outside of universal knowledge.
- Common knowledge $(C\varphi)$:
 - Everyone knows that everyone knows that...that everyone knows φ .
 - No paths out of φ .

イロト イポト イヨト イヨト

Back to the kids

Eight possible worlds.

Hughes The Muddy Children: A logic for public announcement

Э

Back to the kids

Eight possible worlds.

- 0 clean
- 1 muddy

・ロン ・回と ・ヨン ・ヨン

Back to the kids

Eight possible worlds.

- 0 clean
- 1 muddy

・ロン ・回と ・ヨン・

Э

Back to the kids

Eight possible worlds.

- 0 clean
- 1 muddy

イロン イヨン イヨン イヨン

Back to the kids

Eight possible worlds.

- 0 clean
- 1 muddy

Back to the kids

Quincy is muddy in these four worlds.

・ロン ・回と ・ヨン・

Back to the kids

Quincy is muddy in these four worlds. Prescott is muddy in these four.

イロン イヨン イヨン イヨン

Back to the kids

Quincy is muddy in these four worlds.

Prescott is muddy in these four. And Hughes is muddy in these four.

イロト イヨト イヨト イヨト

Back to the kids

Quincy is muddy in these four worlds.

Prescott is muddy in these four. And Hughes is muddy in these four.

イロト イヨト イヨト イヨト

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't.

<ロ> (日) (日) (日) (日) (日)

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't. World 110 is indistinguishable from 010.

イロト イヨト イヨト イヨト

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't. World 110 is indistinguishable from 010. Quincy's epistemic relation.

(本間) (本語) (本語)

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't. World 110 is indistinguishable from 010. Quincy's epistemic relation. Prescott's relation.

(4月) イヨト イヨト

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't. World 110 is indistinguishable from 010. Quincy's epistemic relation. Prescott's relation. And Hughes's relation.

< 1[™] >

(4) (5) (4) (5) (4)

Back to the kids

Quincy cannot distinguish a world where he is muddy from one where he isn't. World 110 is indistinguishable from 010. Quincy's epistemic relation. Prescott's relation. And Hughes's relation.

< 1[™] >

A B K A B K

Outline

The muddy children

Modal logics

- 3 The epistemic operator
- A logic for public announcement

・ロン ・回 と ・ ヨ と ・ ヨ と

Dynamic features

What happens when someone announces φ ?

Hughes The Muddy Children: A logic for public announcement

イロト イヨト イヨト イヨト

Dynamic features

What happens when someone announces φ ?

Everyone learns that φ was true when announced.

< 1[™] >

Dynamic features

What happens when someone announces φ ?

Everyone learns that φ was true when announced.

So the $\neg \varphi$ worlds are unimportant. Take 'em out!

3 ×

Dynamic features

What happens when someone announces φ ?

Everyone learns that φ was true when announced.

So the $\neg \varphi$ worlds are unimportant. Take 'em out! Edges, too!

3 ×

Dynamic features

What happens when someone announces φ ?

Everyone learns that φ was true when announced.

So the $\neg \varphi$ worlds are unimportant. Take 'em out! Edges, too!

Information reduces uncertainty by eliminating possibilities.

A model of possible models!

• Announcing φ changes the model.

Hughes The Muddy Children: A logic for public announcement

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ ∃ →

- ∢ ⊒ →

A model of possible models!

- Announcing φ changes the model.
- Announcing ψ changes it another way.

A model of possible models!

- Announcing φ changes the model.
- Announcing ψ changes it another way.
- Get a transition system on models.

< ∃ >

A model of possible models!

- Announcing φ changes the model.
- Announcing ψ changes it another way.
- Get a transition system on models.
- Another Kripke frame!

< 3 > <

Resolving the muddy children

Baba: "At least one of you is muddy."

< 17 >

• 3 >

< ≣ >

Resolving the muddy children

Baba: "At least one of you is muddy." World 000 is inconsistent with this announcement.

< 🗇 🕨

• 3 >

- ∢ ⊒ ⊳

Resolving the muddy children

Baba: "At least one of you is muddy." World 000 is inconsistent with this announcement. We remove it from the model.

• E • • E •

Resolving the muddy children

Baba: "At least one of you is muddy." World 000 is inconsistent with this announcement. We remove it from the model. Before $w_{110} \models E\varphi$.

(本間) (本語) (本語)

Resolving the muddy children

Baba: "At least one of you is muddy." World 000 is inconsistent with this announcement. We remove it from the model. Before $w_{110} \models E\varphi$. Now $w_{110} \models C\varphi$.

(本間) (本語) (本語)

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

< (10 b)

- 3 ≥ >

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

Remove world 100!

• E • • E •

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

Remove world 100! Remove world 010!

< 177 ▶

• E • • E •

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

Remove world 100! Remove world 010! Remove world 001!

< 🗇 🕨

4 B K 4 B K

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "I don't know." Prescott: "I don't know." Hughes: "I don't know."

Remove world 100! Remove world 010! Remove world 001!

A much simpler model!

イロト イポト イヨト イヨト
Resolving the muddy children

But now: $w_{110} \models K_Q("Q \text{ is muddy}")!$

Hughes The Muddy Children: A logic for public announcement

- 4 回 2 - 4 □ 2 - 4 □

æ

Resolving the muddy children

But now: $w_{110} \models K_Q$ ("Q is muddy")! Baba: "Are you muddy?" Quincy: "Yes!" Prescott: "Yes!" Hughes: "I don't know."

< 🗇 🕨

(4) (3) (4) (3) (4)

Resolving the muddy children

But now: $w_{110} \models K_Q$ ("Q is muddy")! Baba: "Are you muddy?" Quincy: "Yes!" Prescott: "Yes!" Hughes: "I don't know."

Quincy knows Quincy is muddy: remove 011 and 111.

- 4 同 6 4 日 6 4 日 6

Resolving the muddy children

But now: $w_{110} \models K_Q$ ("*Q* is muddy")! Baba: "Are you muddy?" Quincy: "Yes!" Prescott: "Yes!" Hughes: "I don't know." Quincy knows Quincy is mude

Quincy knows Quincy is muddy: remove 011 and 111.

Prescott knows Prescott is muddy: remove 111 and 101.

イロト イポト イヨト イヨト

Resolving the muddy children

Baba: "Are you muddy?" Quincy: "Yes!" Prescott: "Yes!" Hughes: "No!"

イロン イヨン イヨン イヨン

æ

References

- Stanford Encyclopedia of Philosophy. . http://plato.stanford.edu/entries/logic-modal/
- Benthem, J. v. "Language, logic, and communication". In Logic in Action, J. van Benthem, et al. ILLC, 2001.
- Benthem, J. v. "One is a Lonely Number". http://staff.science.uva.nl/~johan/Muenster.pdf

(ロ) (同) (E) (E) (E)