## A Semantics for Functional Efficacy

Jesse Hughes<sup>1</sup> Sjoerd Zwart<sup>1,2</sup>

<sup>1</sup>Technical University of Eindhoven

<sup>2</sup>Technical University of Delft

August 11, 2005

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ●□□ の ○ ○

## Outline

#### 1 Means-end relations and artifactual functions

- From functions to means-end relations
- Means-end relations and function fulfillment

## Outline

#### Means-end relations and artifactual functions

- From functions to means-end relations
- Means-end relations and function fulfillment

#### 2 Efficacy and malfunction

- Efficacy as a fuzzy property
- Type-token comparisons and malfunction

▲□▶ ▲ 国▶ ▲ 国▶ -

## Outline

#### Means-end relations and artifactual functions

- From functions to means-end relations
- Means-end relations and function fulfillment

#### 2 Efficacy and malfunction

- Efficacy as a fuzzy property
- Type-token comparisons and malfunction

<ロ> (四) (四) (注) (注) ()



• "The function of the heart is to pump blood."

<ロ> (四) (四) (注) (注) ()

문 님



- "The function of the heart is to pump blood."
- "That switch mutes the television."

イロト イヨト イヨト イヨト



- "The function of the heart is to pump blood."
- "That switch mutes the television."

<ロ> (四) (四) (注) (注) ()

포네크

• "The subroutine ensures that the user is authorized."



- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

<ロ> (日) (日) (日) (日) (日)



- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

イロト イポト イヨト イヨト

We ascribe functions to biological stuff,



- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

イロト イポト イヨト イヨト

We ascribe functions to biological stuff, artifacts,



- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

イロト イポト イヨト イヨト

We ascribe functions to biological stuff, artifacts, algorithms,



- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

イロト イポト イヨト イヨト

We ascribe functions to biological stuff, artifacts, algorithms, personal roles...



- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

We ascribe functions to biological stuff, artifacts, algorithms, personal roles...

#### We focus on artifactual functions.



"That switch mutes the television."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの



"That switch mutes the television." ↓ One can *use* the switch to mute the television.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの



"That switch mutes the television." ↓ One can *use* the switch to mute the television. ↓ Some *action* involving the switch will cause the television to be muted.

<ロ> (日) (日) (日) (日) (日)



"That switch mutes the television." ↓ One can *use* the switch to mute the television. ↓ Some *action* involving the switch will cause the television to be muted.

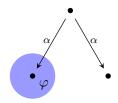
<ロ> (日) (日) (日) (日) (日)

• Functions imply means-end relations.



"That switch mutes the television." ↓ One can *use* the switch to mute the television. ↓ Some *action* involving the switch will cause the television to be muted.

・ 同 ト・ ・ ヨート・ ・ ヨート


- Functions imply means-end relations.
- Aim: Use means-end semantics to analyze functions.

A means is an action  $\alpha$  that can realize one's end  $\varphi.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの

A means is an action  $\alpha$  that can realize one's end  $\varphi$ .

Two interpretations:



Weak:  $\alpha$  might realize  $\varphi$ .

イロト イポト イヨト イヨト

A means is an action  $\alpha$  that can realize one's end  $\varphi.$ 

Two interpretations:



Weak:  $\alpha$  might realize  $\varphi$ . Strong:  $\alpha$  will realize  $\varphi$ .

・ 同・ ・ ヨ・・ ・ ヨ・

A means is an action  $\alpha$  that can realize one's end  $\varphi.$ 

Two interpretations:



Weak:  $\alpha$  *might* realize  $\varphi$ . Strong:  $\alpha$  *will* realize  $\varphi$ .

Both are easily expressed in Propositional Dynamic Logic.

▲□▶ ▲ □▶ ▲ □

A means is an action  $\alpha$  that can realize one's end  $\varphi.$ 

Two interpretations:



Weak:  $\alpha$  might realize  $\varphi$ . Strong:  $\alpha$  will realize  $\varphi$ .

Both are easily expressed in Propositional Dynamic Logic.

Result: Formal definitions for " $\alpha$  is a (weak/strong) means to  $\varphi$ ."

- 同 ト - 4 日 ト - 4 日

A functional ascription f includes the following components.

• an artifact type T,

A functional ascription f includes the following components.

- an artifact type T,
- $\bullet\,$  a list  $\sigma$  of parameter types,

◆□→ ◆三→ ◆三→ 三三日

- A functional ascription f includes the following components.
  - an artifact type T,
  - $\bullet\,$  a list  $\sigma\,$  of parameter types,
  - an action  $\alpha$ ,

◆□→ ◆三→ ◆三→ 三三日

- A functional ascription f includes the following components.
  - an artifact type T,
  - a list  $\sigma$  of parameter types,
  - an action  $\alpha$ ,
  - $\bullet$  an end  $\varphi$

(1日) (日) (日) (日)

- A *functional ascription f* includes the following components.

  - an artifact type *T*,
    a list *σ* of parameter types,
  - an action  $\alpha$ .
  - an end  $\varphi$

- A functional ascription f includes the following components.

  - an artifact type T, a list  $\sigma$  of parameter types, an action  $\alpha$ , an action  $\alpha$ , Takes parameters from

- A *functional ascription f* includes the following components.

  - an artifact type T, a list  $\sigma$  of parameter types, an action  $\alpha$ , Takes parameters from

- - E - - - E - -

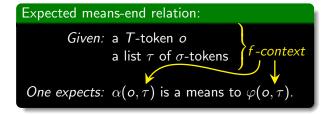
#### Expected means-end relation:

Given: a T-token o a list  $\tau$  of  $\sigma$ -tokens

One expects:  $\alpha(o, \tau)$  is a means to  $\varphi(o, \tau)$ .

- A functional ascription f includes the following components.

  - an artifact type *T*,
    a list σ of parameter types,
  - an action  $\alpha$ ,
  - an end  $\varphi$


Context types 
 Takes parameters from ✓

| Expected means-end relation:                            |       |
|---------------------------------------------------------|-------|
| Given: a T-token o<br>a list $	au$ of $\sigma$ -tokens  | ntext |
| One expects: $lpha(o,	au)$ is a means to $arphi(o,	au)$ | au).  |

- A *functional ascription f* includes the following components.

  - an artifact type *T*,
    a list *σ* of parameter types,
  - an action  $\alpha$ .
  - an end  $\varphi$

Context types < Takes parameters from



From functions to means-end relations Means-end relations and function fulfillment

### Example: fire starters

Various artifacts are used to start fires.

Type: *FireStarter* 



#### Example: fire starters

Various artifacts are used to start fires.

Type: *FireStarter* Parameters: User Weather/lighting conditions Kindling







イロト イヨト イヨト イヨト

#### Example: fire starters

Various artifacts are used to start fires.

Type: *FireStarter* Parameters: User Weather/lighting conditions Kindling Action: **ignite**<sub>?</sub>(?)









イロト イヨト イヨト イヨト

### Example: fire starters

Various artifacts are used to start fires.

Type: *FireStarter* Parameters: User Weather/lighting conditions Kindling Action: **ignite**<sub>?</sub>(?) End: burning(?)











・ロト ・ 日ト ・ モート

## Example: fire starters

Various artifacts are used to start fires.

Type: *FireStarter* Parameters: User Weather/lighting conditions Kindling Action: **ignite**<sub>?</sub>(?) End: burning(?)

An *f*-context is given by

• a fire-starting device o,











<ロ> (日) (日) (日) (日) (日)

# Example: fire starters

Various artifacts are used to start fires.

- Type: *FireStarter* Parameters: User Weather/lighting conditions Kindling
  - Action: **ignite**<sub>?</sub>(?) End: burning(?)
- An *f*-context is given by
  - a fire-starting device o,
  - particular user *u*, weather conditions *c* and kindling *k*.











<ロ> (日) (日) (日) (日) (日)

# Token fulfillment

#### An artifact o (weakly/strongly) fulfills f wrt $\tau$ $\uparrow$ $\alpha$ is a (weak/strong) means to $\varphi$ in context $\langle o, \tau \rangle$ .

# Token fulfillment

#### An artifact o (weakly/strongly) fulfills f wrt $\tau$ $\uparrow$ $\alpha$ is a (weak/strong) means to $\varphi$ in context $\langle o, \tau \rangle$ .

# Token fulfillment

An artifact o (weakly/strongly) fulfills f wrt  $\tau$   $\uparrow$  $\alpha$  is a (weak/strong) means to  $\varphi$  in context  $\langle o, \tau \rangle$ .

A FireStarter o fulfills f wrt 
$$\langle u, c, k \rangle$$
  
ignite <sub>$\langle u, c, k \rangle$</sub> (o) realizes burning(k).  
 $\updownarrow$   
When u ignites k via o in conditions c, kindling k burns.

## Functions and subtypes

Subtypes do not always fulfill supertype functions.

<ロ> (四) (四) (注) (注) ()

문 문

#### Functions and subtypes

Subtypes do not always fulfill supertype functions.

 $\textit{CarLighter} \leq \textit{Lighter} \leq \textit{FireStarter}$ 







<ロ> (日) (日) (日) (日) (日)

## Functions and subtypes

Subtypes do not always fulfill supertype functions.

 $\textit{CarLighter} \leq \textit{Lighter} \leq \textit{FireStarter}$ 

• Typical lighters are good means to starting fires.







### Functions and subtypes

Subtypes do not always fulfill supertype functions.

 $CarLighter \leq Lighter \leq FireStarter$ 

- Typical lighters are good means to starting fires.
- But car lighters do not ignite kindling easily.







### Functions and subtypes

Subtypes do not always fulfill supertype functions.

 $CarLighter \leq Lighter \leq FireStarter$ 

- Typical lighters are good means to starting fires.
- But car lighters do not ignite kindling easily.

Lighter fulfills f, but CarLighter does not fulfill f.







< ロト (周) (日) (日)

Defined: token fulfills a function f.

Defined: token fulfills a function f.

When does a subtype  $T' \leq T$  fulfill f?

Defined: token fulfills a function f.

When does a subtype  $T' \leq T$  fulfill f?

## Universal fulfillment:



every  $o \in T'$  fulfills f.

Defined: token fulfills a function f.

When does a subtype  $T' \leq T$  fulfill f?

# Universal fulfillment:



#### every $o \in T'$ fulfills f.

#### Normal fulfillment:



every "normal"  $o \in T'$  fulfills f.

### Normal tokens: the controversial bits

Each type T comes with a set  $N_T$  of *normal* tokens.



### Normal tokens: the controversial bits

Each type T comes with a set  $N_T$  of *normal* tokens.

Are normal tokens "real" tokens?



### Normal tokens: the controversial bits

```
Each type T comes with a set N_T of normal tokens.
```

Are normal tokens "real" tokens? NO!

every T-token is broken xnormal T-tokens are broken.



<ロ> (日) (日) (日) (日) (日)

### Normal tokens: the controversial bits

```
Each type T comes with a set N_T of normal tokens.
```

Are normal tokens "real" tokens? NO!

every *T*-token is broken X normal *T*-tokens are broken.

```
Normal tokens are useful fictions.
Express how T-things are expected to behave.
```



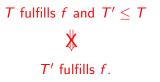
・ロト ・回ト ・ヨト ・ヨト

#### Functions and subtypes

Subtypes do not always fulfill supertype functions.

Lighter fulfills f, but CarLighter does not fulfill f.








#### Functions and subtypes

Subtypes do not always fulfill supertype functions.

Lighter fulfills f, but CarLighter does not fulfill f.









#### Functions and subtypes

Subtypes do not always fulfill supertype functions.

Lighter fulfills f, but CarLighter does not fulfill f.

T fulfills f and  $T' \leq T$ 

 $\Phi$ T' fulfills f.

 $\begin{array}{rcl} \underline{\text{Universal fulfillment:}} & T \text{ fulfills } f & \Rightarrow & T' \text{ fulfills } f \\ \hline \underline{\text{Normal fulfillment:}} & \\ T \text{ fulfills } f \text{ and } N_{T'} \subseteq N_T & \Rightarrow & T' \text{ fulfills } f \end{array}$ 



# Functions and subtypes

Universal fulfillment:

Subtypes do not always fulfill supertype functions.

Lighter fulfills f, but CarLighter does not fulfill f.

T fulfills f and  $T' \leq T$ 

T' fulfills f.

 $T \text{ fulfills } f \implies T' \text{ fulfills } f$   $\underbrace{\text{Normal fulfillment:}}_{T \text{ fulfills } f \text{ and } N_{T'} \subseteq N_T \implies T' \text{ fulfills } f$   $\underbrace{\text{Normal CarLighters are not normal Lighters.}}_{T \text{ fulfills } f \text{ fulfills } f$ 







< 日 > (四 > (三 > (三 > )))

# Outline

#### Means-end relations and artifactual functions

- From functions to means-end relations
- Means-end relations and function fulfillment

#### 2 Efficacy and malfunction

- Efficacy as a fuzzy property
- Type-token comparisons and malfunction

### Functions and efficacy

Different tokens can be distinguished by propensities to achieve goal.

<ロ> (四) (四) (注) (注) ()

문 권

Efficacy as a fuzzy property Type-token comparisons and malfunction

# Functions and efficacy

Different tokens can be distinguished by propensities to achieve goal.

In a windy context, a Zippo may be more effective than a Bic.





・ 同 ト・ ・ ヨート・ ・ ヨート

Efficacy as a fuzzy property Type-token comparisons and malfunction

# Functions and efficacy

Different tokens can be distinguished by propensities to achieve goal.

In a windy context, a Zippo may be more effective than a Bic.

Both are more effective than flint and steel.







・同・ ・ヨト ・ヨ

Efficacy as a fuzzy property Type-token comparisons and malfunction

# Functions and efficacy

Different tokens can be distinguished by propensities to achieve goal.

In a windy context, a Zippo may be more effective than a Bic.

Both are more effective than flint and steel.

Efficacy: the degree to which a token is reliable in fulfilling its function.







(D) (A) (A)

Efficacy: the degree to which a token is reliable in fulfilling its function.

Efficacy: the degree to which a token is reliable in fulfilling its function.

A FireStarter o fulfills f in context  $\langle u, c, k \rangle$ ignite $_{\langle u, c, k \rangle}(o)$  is a means to burning(k).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへの

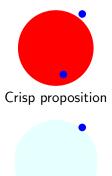
Efficacy: the degree to which a token is reliable in fulfilling its function.

Need: efficacy of means to an end.

Efficacy: the degree to which a token is reliable in fulfilling its function.

Need: efficacy of means to an end. degree to which  $\alpha$  reliably realizes  $\varphi$ .

Need: efficacy of means to an end. degree to which  $\alpha$  reliably realizes  $\varphi.$ 


" $\alpha$  reliably realizes  $\varphi$  " is a  $\underline{\mathit{fuzzy}}$  proposition.

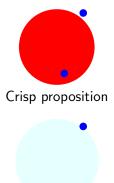
・ 同 ト・ イ ヨ ト・ イ ヨ ト

Need: efficacy of means to an end. degree to which  $\alpha$  reliably realizes  $\varphi.$ 

" $\alpha$  reliably realizes  $\varphi$  " is a  $\underline{\mathit{fuzzy}}$  proposition.

Fuzzy logic: the logic of vague propositions.




Fuzzy proposition

▲□▶ ▲ □▶ ▲ □

Need: efficacy of means to an end. degree to which  $\alpha$  reliably realizes  $\varphi.$ 

" $\alpha$  reliably realizes  $\varphi$ " is a <u>fuzzy</u> proposition.

Fuzzy logic: the logic of vague propositions. Fuzzy semantics assigns <u>truth degrees</u>  $0 \le x \le 1$  to formulas.



Fuzzy proposition

(D) (A) (A)

Need: efficacy of means to an end. degree to which  $\alpha$  reliably realizes  $\varphi.$ 

" $\alpha$  reliably realizes  $\varphi$ " is a <u>fuzzy</u> proposition.

Fuzzy logic: the logic of vague propositions.

Fuzzy semantics assigns <u>truth degrees</u>  $0 \le x \le 1$  to formulas.

Efficacy of  $\alpha$  in  $\varphi$ : Truth degree of " $\alpha$  reliably realizes  $\varphi$ ."



(D) (A) (A)

# Efficacy of artifact types

Token-token comparison:

Can compare efficacy of two tokens.

What about efficacy of an artifact type?

Efficacy as a fuzzy property Type-token comparisons and malfunction

### Efficacy of artifact types

Token-token comparison:

Can compare efficacy of two tokens.

What about efficacy of an artifact type?

What is the efficacy of *Lighter* for starting fires?



< (T) >

Efficacy as a fuzzy property Type-token comparisons and malfunction

### Efficacy of artifact types

Token-token comparison:

Can compare efficacy of two tokens.

What about efficacy of an artifact type?

What is the efficacy of *Lighter* for starting fires? *Match*? *CarLighter*?







< 17 ×

Efficacy as a fuzzy property Type-token comparisons and malfunction

### Efficacy of artifact types

Token-token comparison:

Can compare efficacy of two tokens.

What about efficacy of an artifact type?

What is the efficacy of *Lighter* for starting fires? *Match*? *CarLighter*?





*f*-efficacy of type T: infimum {*f*-eff. of  $o \mid o$  is a normal T-token}



Proposal: A token malfunctions when it is ineffective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの

Proposal: A token malfunctions when it is ineffective. Ineffective compared to what?

Proposal: A token malfunctions when it is ineffective. Ineffective compared to what?

<u>Normal</u> tokens of narrow type ....

Proposal: A token malfunctions when it is ineffective. Ineffective compared to what?

<u>Normal</u> tokens of narrow type ...

... in similar contexts.

(日) (周) (日) (日) (日)

Proposal: A token malfunctions when it is ineffective. Ineffective compared to what?

<u>Normal</u> tokens of narrow type . . . . . . in similar contexts.

A Lighter malfunctions when it is ineffective at starting fires.

(日) (周) (日) (日) (日)

Proposal: A token malfunctions when it is ineffective. Ineffective compared to what?

<u>Normal</u> tokens of narrow type . . . . . . in similar contexts.

A *Lighter* malfunctions when it is ineffective at starting fires. A *CarLighter* malfunctions when it is less effective than normal *CarLighters*.

(日) (周) (日) (日) (日)

• Aim: Formal semantics for clarifying natural language.

◆□> 
◆□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□> 
●□>

- Aim: Formal semantics for clarifying natural language.
  - Relation between function and means-ends.

- Aim: Formal semantics for clarifying natural language.
  - Relation between function and means-ends.
  - Efficacy for token-token, type-type and token-type comparisons.

- Aim: Formal semantics for clarifying natural language.
  - Relation between function and means-ends.
  - Efficacy for token-token, type-type and token-type comparisons.
  - Formal definition of one kind of malfunction.

(日) (周) (王) (王)

- Aim: Formal semantics for clarifying natural language.
  - Relation between function and means-ends.
  - Efficacy for token-token, type-type and token-type comparisons.
  - Formal definition of one kind of malfunction.
- Adapted PDL with fuzzy logic for "reliability".

イロト イポト イヨト イヨト

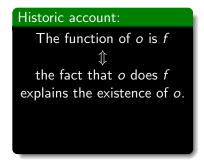
- Aim: Formal semantics for clarifying natural language.
  - Relation between function and means-ends.
  - Efficacy for token-token, type-type and token-type comparisons.
  - Formal definition of one kind of malfunction.
- Adapted PDL with fuzzy logic for "reliability".
- Introduced normal tokens but needs a philosophical analysis!

イロト イポト イヨト イヨト

- Aim: Formal semantics for clarifying natural language.
  - Relation between function and means-ends.
  - Efficacy for token-token, type-type and token-type comparisons.
  - Formal definition of one kind of malfunction.
- Adapted PDL with fuzzy logic for "reliability".
- Introduced normal tokens but needs a philosophical analysis!

# Thank you.

Function origins Extra material on normal tokens


### Outline



#### 4 Extra material on normal tokens

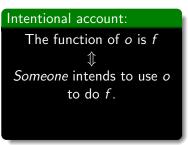
Hughes, Zwart A Semantics for Functional Efficacy

(日) (四) (전) (전) (전) (전)



- - E - - - E - -

#### Historic account:


The function of o is f  $\uparrow$ the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

#### Historic account:

The function of o is f  $\uparrow$ the fact that o does fexplains the existence of o.

Biological function same as artifactual function.



< 3 > </

#### Historic account:

The function of o is f  $\uparrow$ the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

#### Intentional account: The function of o is f

Someone intends to use o
 to do f.

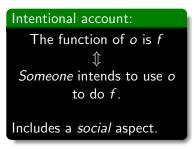
Includes a *social* aspect.

#### Historic account:

The function of o is f  $\uparrow$ the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

Intentional account: The function of o is f  $\uparrow$ Someone intends to use oto do f. Includes a *social* aspect.


#### Good question, but...

• not easily analyzed by formal semantics;

#### Historic account:

The function of o is f  $\uparrow$ the fact that o does fexplains the existence of o.

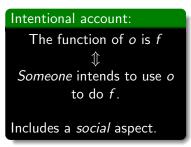
Biological function same as artifactual function.



Good question, but...

- not easily analyzed by formal semantics;
- not immediately relevant to today's task.

#### Historic account:


```
The function of o is f

\uparrow

the fact that o does f

explains the existence of o.
```

Biological function same as artifactual function.

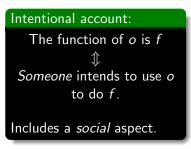


Good question, but...

- not easily analyzed by formal semantics;
- not immediately relevant to today's task.

Expectations and behavior are good fodder for formalization.

#### Historic account:


```
The function of o is f

\uparrow

the fact that o does f

explains the existence of o.
```

Biological function same as artifactual function.



I ∃ ≥

Good question, but...

- not easily analyzed by formal semantics;
- not immediately relevant to today's task.

Expectations and behavior *are* good fodder for formalization. Start with means-end relations.

### Outline





三日 のへの

We add fictional objects to our semantics? What are you thinking?



< 17 ▶

We add fictional objects to our semantics?

What are you thinking?

• Counterfactuals bad. Fictions barely worse.



A (1) > (1) > (1)

- - E

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.



A (1) > (1) > (1)

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.
- Formally simple, conceptually opaque.



< 17 ×

I ∃ ≥

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.
- Formally simple, conceptually opaque.
- Gives sense of malfunction.



I ∃ ≥

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.
- Formally simple, conceptually opaque.
- Gives sense of malfunction.
- Distinguishes subtypes.

