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Birkhoff-type theorems

Let I' be polynomial and V C Set'.

»
Theorem (Birkhoff variety theorem).

Mod ThV = HSPV
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Birkhoff-type theorems

Let I" be polynomial and V C Set'.
(I‘heorem (Birkhoff variety theorem).

Mod ThV = HSPV

Theorem (Quasivariety theorem).
ModImpV = SPV

Theorem (Horn variety theorem).

Mod HornV = SPTV
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Equationsin Set"

Let I':Set—Set be a polynomial functor and let
X € Set. We have an adjunction
F
Set-~ 1 “Set!

e =
U

An equation over X IS a pair t; =x to of elements of
U F X, the carrier of the free algebra over X.
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Equationsin Set"

An equation over X IS a pair t; =x to of elements of
U F X, the carrier of the free algebra over X.

We say (A, o) =ty =x to iff forevery o: X—A, we
have 0 ot = o o t».

11 p
1 == UFX —">U(A, a)
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Equationsin Set"

An equation over X IS a pair t; =x to of elements of
U F X, the carrier of the free algebra over X.

Let (@, v) be the coequalizer of FliﬁlFX.

lo
(A, )y =t =x to iffforeveryo: FX—(A, a), thereis a
homomorphism & making the diagram below commute.

= _
F1—=FX " (A, a)

t2 7

@, v)
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Equationsin Set"

An equation over X IS a pair t; =x to of elements of
U F X, the carrier of the free algebra over X.

Let (@, v) be the coequalizer of FliﬁlFX.
lo

(A, )y =t =x to iffforeveryo: FX—(A, a), thereis a
homomorphism & making the diagram below commute.

= _
F1—=FX " (A, a)

t2 \(

@, v)

Hom (X, A) = Hom (F X, (A, a)) = Hom((Q, v, (A, a))

Some Co-Birkhoff-Type Theorems — p.4/25



Sets of equations

Consider a set E of equations over X and say (A, a) = F
iff (A, o) =t =ty foreveryt; =t, € F.
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Sets of equations

Consider a set E of equations over X and say (A, a) = F
iff (A, o) =t =ty foreveryt; =t, € F.
Then we have a pair of maps

E==UFX
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Sets of equations

Consider a set E of equations over X and say (A, a) = F
iff (A, o) =t =ty foreveryt; =t, € F.
Then we have a pair of maps

FENﬁFX

Some Co-Birkhoff-Type Theorems — p.5/25



Sets of equations

Then we have a pair of maps

FE;%FX

Let g: F X (@, v) be the coequalizer.
— [/ just in case every FFX—(A, «) factors

Then (A, a)
through g.

FE——FX—">(A, a)

l

Q. v)

X
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| nj ectivity

Let f:B—C begivenand A € C. We say that A Is

f-injective Iif, for every map B— A factors through f (not
necessarily uniquely).

B— A

C
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| nj ectivity

Let FE—FX—((Q), v) be a coequalizer diagram.
(A, a) E FE iffevery FX—(A, «) factors through

(@, v).

FE——FX—">(A, a)

@, v)
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| nj ectivity

Let FE—=FX—((Q, v) be a coequalizer diagram.
(A, a) E FEiffevery FX—(A, «) factors through

(@, v).

FE——=FX—"(A, o)

(@, v)

r

(A, a) = F justin case (A, o) is injective with respect
to FX—(Q, v).
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| nj ectivity

FE——=FX—— (A, a)

(@, v)

r

(A, o) = E justin case (A, a) is injective with respect
to FX—(Q, v).

Thus, Injectivity with respect to certain (classes of) arrows
gives a notion of generalized equational satisfaction.
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Coneinjectivity

A discrete coneis a pairc = (B, {f;: B—C; }icr).

B
/N
c, C,

An object A Is injective with respect to c If every B— A
factors through some f;.

AN

B
|
Ci
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Thegameplan

Németi and Sain defined, for each composition X = HSY,
HSXT, etc., aclass of cones, M C SubCat(Cone(C)).
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Thegameplan

Németi and Sain defined, for each composition X = HSY,
HSXT, etc., aclass of cones, M C SubCat(Cone(C)).
For instance, My sp consists of those cones such that

Each cone Is a
single arrow.
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Thegameplan

Németi and Sain defined, for each composition X = HSY,
HSXT, etc., aclass of cones, M C SubCat(Cone(C)).
For instance, My sp consists of those cones such that

Each arrow
IS epl.

e

C
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Thegameplan

Németi and Sain defined, for each composition X = HSY,
HSXT, etc., aclass of cones, M C SubCat(Cone(C)).
For instance, My sp consists of those cones such that

B 1s epi-
projective.
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Thegameplan

Németi and Sain defined, for each composition X = HSY,
HSXT, etc., aclass of cones, M C SubCat(Cone(C)).

Next, we define, for each X, an operator
K :SubCat(C)—— SubCat(Cocone(C)).
K 5V represents the M ;-theory of V. That is,
K)?V = {C S M)? ’ V C Inj(c)}.
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Thegameplan

Next, we define, for each X, an operator
K :SubCat(C)—— SubCat(Cocone(C)).
K 5V represents the M ;-theory of V. That Is,
K)?V = {C S M)? ’ V C Inj(c)}.

Finally, we prove a whole slew of theorems of the form

—

Inj(MV) = XV,

greatly impressing everybody.
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Thegameplan

Next, we define, for each X, an operator
K :SubCat(C)—— SubCat(Cocone(C)).
K 5V represents the M ;-theory of V. That Is,
K)?V = {C S M)? ’ V C Inj(c)}.

Finally, we prove a whole slew of theorems of the form

—

Inj(MV) = XV,
greatly impressing everybody.

It’s been done.
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Thegameplan

Finally, we prove a whole slew of theorems of the form

—

Inj(MyV) =XV,
greatly impressing everybody.

It’s been done.
' Plan B: Turn all the arrows around and see what you get.
Hope someone Is mildly interested.
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The abstract setting

We assume the following:
C has all coproducts.
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The abstract setting

We assume the following:
C has all coproducts.

C has a factorization system (H, S).

This assumption appeared earlier in our use of epis. Implic-

itly, we were using the factorization system (Epi, Mono) in
Set.
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The abstract setting

We assume the following:
C has all coproducts.

C has a factorization system (H, S).
C 1s S-well-powered

A category Is S-well-powered If for each C' € C, the
collection

1J €85 |cod(j) =C}/ =

IS a set.
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The abstract setting

We assume the following:
C has all coproducts.
C has a factorization system (H, S).
C 1s S-well-powered
C has enough S-injectives.

Recall an object C' is S-injective if, forall A —~B inC, and
all A—C', there Is an extension B—C'.

A—C

i

B
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The abstract setting

We assume the following:
C has all coproducts.
C has a factorization system (H, S).
C 1s S-well-powered
C has enough S-injectives.

In Set, every non-empty set Is Mono-injective.
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The abstract setting

We assume the following:
C has all coproducts.
C has a factorization system (H, S).
C 1s S-well-powered
C has enough S-injectives.

C has enough injectives if for every A In C, there Is an S-
Injective C' and a S-morphism A —C'.
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Projectivity and cocones

A discrete coneisapairc = (B, {f;: B—C; }icr).

2y
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Proj ectivity and cocones

A discrete coconeis a pair c = (B, {f;:Ci—B}icr).
A
Ci C;

An object A is injective with respect to c if every B— A
factors through some f;.

AN

B
- le
C;
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Projectivity and cocones

A discrete coconeis a pair c = (B, {f;:Ci—B}icr).
A
Ci C;

An object A is projective with respect to c if every A— P
(co-)factors through some f;.

B+

Ci
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The cocone classes M ;;

Define

Ms  coconeswith injective vertex e

M, cocones with S-morphisms o

75, 7
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The cocone classes M ;;

Define

Ms  coconeswith injective vertex e

M, cocones with S-morphisms o

T AN /A

M cocones with one arrow o
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The cocone classes M 3

Define

o

Ms  coconeswith injectivevertex e <
o
[

My,  coconeswith S-morphisms e /
N
My, cocones with one arrow °o:— o
o<— ©

M+ coconeswith O or 1 arrow
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The cocone classes M ;

Define

o

Ms  coconeswith injectivevertex e <
o
[

My,  coconeswith S-morphisms e /
N
My, cocones with one arrow °o:— o
o<— ©

M+ coconeswith O or 1 arrow

For composites X = X ... X,

Mf:Mgﬁﬂ...ﬂMx.

n
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The cocone classes M 3

Define

o

Ms  coconeswith injectivevertex e <
o
[

My,  coconeswith S-morphisms e /
N
My, cocones with one arrow °o:— o
o<— ©

M+ coconeswith O or 1 arrow
o

M 5 can be considered the language of the theory at hand.
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A cornucopia of closure operators

We define the following operators

SubCat(C)—— SubCat(C).
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A cornucopia of closure operators

We define the following operators

SubCat(C)—— SubCat(C).
HV ={Be(C|3dV>(C—»B}

Note: The symbols ‘H and S do double duty, as classes of
arrows and also as closure operators.
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A cornucopia of closure operators

We define the following operators

SubCat(C)—— SubCat(C).

HV ={Be(C|3dV>(C—»B}
SV={BeC|dB—(CeV}
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A cornucopia of closure operators

We define the following operators

SubCat(C)—— SubCat(C).
HV ={Be(C|3V>C—»B}
SV={BelC|dB~—C eV}
XV = {B cC H{Ai}z‘el CV.B= HAZ}
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A cornucopia of closure operators

We define the following operators

SubCat(C)—— SubCat(C).
HV ={Be(C|3dV>(C—»B}
SV={BelC|dB~—(C eV}
>V = {B e C H{A@'}z‘el CV.B= HA@}
STV ={BeC|HA} ier CV.B=]|] A, I+0}
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A dlew of theorems

Let X be a composite of S, H, > and X" such that
the operators occur in the order above;
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Let X be a composite of S, H, > and X" such that
the operators occur in the order above;

‘H occurs in X.
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A dlew of theorems

Let X be a composite of S, H, > and X" such that
the operators occur in the order above;

H occurs in X.
l.e.. let X be one of

H, HY, HX ", SH, SHX, SHX™
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A dlew of theorems

Let X be a composite of S, H, > and X" such that
the operators occur in the order above;
H occurs in X.

l.e., let X be one of

H, HY, HX ", SH, SHX, SHX™

—

Proj(K;V) = XV

Here, K ;V = {c € My | V C Proj(c)}
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A dlew of theorems

Let X be a composite of S, H, > and X" such that
the operators occur in the order above;
H occurs in X.

l.e., let X be one of

H, HY, HX ", SH, SHX, SHX™

Proj(K;V) = XV

Compare: Mod ThV = HSPV (Birkhoff)
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Categoriesof coalgebras

Let C satisfy our previous requirements and I':C—C be
given. Let U :Cr—C be the forgetful functor.

U creates coproducts, so Cr has them.
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Categories of coalgebras

Let C satisfy our previous requirements and I':C—C be
given. Let U :Cr—C be the forgetful functor.

U creates coproducts, so Cr has them.

If " preserves S-morphisms, then (U—'H, U~1S)
form a factorization system for Cr-.
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Categories of coalgebras

Let C satisfy our previous requirements and I':C—C be
given. Let U :Cr—C be the forgetful functor.

U creates coproducts, so Cr has them.

If " preserves S-morphisms, then (U—'H, U~1S)
form a factorization system for Cr-.

Cr is U~ 'S-well-powered.
If U 4 H, then Cr has enough (cofree) injectives.
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Categories of coalgebras

Let C satisfy our previous requirements and I':C—C be
given. Let U :Cr—C be the forgetful functor.

U creates coproducts, so Cr has them.

If " preserves S-morphisms, then (U—'H, U~1S)
form a factorization system for Cr-.

Cr is U~ 'S-well-powered.
If U 4 H, then Cr has enough (cofree) injectives.

Thus, If I' preserves S-morphisms and Cr has cofree coal-
gebras, then Cr satisfies our abstract setting.
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Categories of coalgebras

Let C satisfy our previous requirements and I':C—C be
given. Let U :Cr—C be the forgetful functor.

U creates coproducts, so Cr has them.

If " preserves S-morphisms, then (U—'H, U~1S)
form a factorization system for Cr-.

Cr is U~ 'S-well-powered.
If U 4 H, then Cr has enough (cofree) injectives.

Moreover, we may restrict our attention to cocones with
cofree vertices, in the case that X contains S.
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Deter ministic automata and languages
Fix an alphabet Z. Let
[':Set——Set

be the functor
X — 2x X
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Deter ministic automata and languages
Fix an alphabet Z. Let
[':Set——Set

be the functor
X — 2x X

A I'-coalgebra (A, «) is an automaton accepting input
from Z and outputting either 0 or 1, where

out,(a) = m o afa)

trans,(a) = m o a(a)
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Deter ministic automata and languages

Let 0 € 7<% and define
eval,: A x T<¥——A
by

eval,(a, () = a,

eval,(a, o % 1) = trans,(eval,(a, o)) (7).

eval,(a, o) is the final state of the calculation beginning in
a With input o.
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Deter ministic automata and languages

Define
acc,: A—P(T=%)

by

acc,(a) ={o € ZT~% | out,oeval,(a,o) = 1}.

acc,(a) is the set of all words accepted by state a.
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Some classes of automata
Fix a language £ C 7<%,
V{{A, a)| ...} V closed under

Va € A. acc(a) =L SHY
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Some classes of automata
Fix a language £ C 7<%,
V{{A, a)| ...} V closed under

Va € A. acc(a) =L SHY
A#0=3Jaec A. acc(a) =L HY
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Some classes of automata

Fix a language £ C 7<%,

V{{A, a)| ...} V closed under
Va € A. acc(a) =L SHY
A#0=3Jaec A. acc(a) =L HY

da € A. acc(a) =L HT
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Some classes of automata

Fix a language £ C 7<%,

V{{A, a)| ...} V closed under
Va € A. acc(a) =L SHY
A#0=3Jaec A. acc(a) =L HY
da € A. acc(a) =L HT

dla € A. acc(a) =L H
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Some classes of automata

Fix a language £ C 7<%,

V{{A, a)| ...} V closed under
Va € A. acc(a) =L SHY
A#0)=3Jaec A. acc(a) =L HY
da € A. acc(a) =L HT
dla € A. acc(a) =L H

dla € A. acc(a) = LandVb e A. b—a SH
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Some classes of automata

Fix a language £ C 7=V,

V{{A, a)| ...} V closed under
Va € A. acc(a) =L SHY
A#0)=3Jaec A. acc(a) =L HY
da € A. acc(a) =L HT
dla € A. acc(a) =L H
dla € A. acc(a) = LandVb e A. b—a SH

In fact, there’s a “hidden” closure operator here.
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Some classes of automata

Fix a language £ C 7=V,

V{{A, )| ...} V closed under
Va € A. acc(a) =L H-SHX
A#0=3aec A. acc(a) =L H™HX
da € A. acc(a) =L H-HX™
dla € A. acc(a) =L H
dla € A. acc(a) = LandVb e A. b—a SH

The '"H~ operator closes a class of coalgebras under domains
of H-morphisms.
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Behavioral classes

Consider the following operators.

HV={BeC|dB—A €V}
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Behavioral classes

Consider the following operators.

H V={BecC|3IB—»AcV}
BV ={B e (C|3relation B«—R—»AcV}

Here, a relation is an S-morphism R —~B x A (we
assume that C has finite products).
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Behavioral classes

Consider the following operators.

HV={BecC|3B—»AcV}
BV ={BeC|3relation B«—R—»Ac 'V}
QV={BeC|3IB«—C—AecV}
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Behavioral classes

H V={BecC|IB—»AcV}
BV ={B e (C|drelation B«—R— A€V}
QV={Be(C|3IB«—C—>»AcV)}

H HV = BBV = QQV. I
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Behavioral classes

HV={BecC|3B—»AcV}
BV ={B e (C|drelation B«—R— A€V}
QV={BeC|dB«—C—»AcV}

p

H~HV = BBV = QQV.

If, In &£, epis are stable under pullback, then
also

HHV = BV = QV.
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The cocone classes M 3

Recall

o

Ms  cocones with injective vertex o <
o
o

My,  cocones with S-morphisms o /
N,
My, cocones with one arrow o:— o
o<— ©

M+ coconeswith O or 1 arrow
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The cocone classes M 5

Ms  cocones with injective vertex o <
o
o

My, coconeswith S-morphisms o /
L,
My, cocones with one arrow o:— o

_ o<— 0
M+ coconeswith O or 1 arrow

My~ cocones with vertex < 1 - <
o
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The cocone classes M 5

Ms  cocones with injective vertex o <
o
o

My, coconeswith S-morphisms o /
L,
My, cocones with one arrow o:— o
o<— ©

M+ cocones with O or 1 arrow
My~ cocones with vertex < 1 - <

As before, for composites ¥ = X, ... X,

Mj:MxlmﬂMXn
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The cocone classes M 3

Ms  cocones with injective vertex o <
o
o

My, coconeswith S-morphisms o /
L,
My, cocones with one arrow o:— o
o<— ©

M+ coconeswith O or 1 arrow

My~ cocones with vertex < 1 - <
o

Also asbefore, K ;V = {c € M3 | V C Proj(X)}.
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An augmented slew

Let X be a composite of H~, S, H, ¥ and X7 such that
the operators occur in the order above;

‘H occurs in X.

Proj(K;V) = XV
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Upcoming topics

What happened to coequations?

What is the formal dual to Birkhoff’s completeness
theorem?
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Upcoming topics

What happened to coequations?

What is the formal dual to Birkhoff’s completeness
theorem?

What is the analogue to Birkhoff’s completeness
theorem (and the corresponding theorem for
conditional coequations)?
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