Some Co-Birkhoff-Type Theorems

Jesse Hughes

jesseh@cs.kun.nl

University of Nijmegen

Some Co-Birkhoff-Type Theorems – p.1/25

I. Some Birkhoff-type theorems

- I. Some Birkhoff-type theorems
- II. Equations and injectivity

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Birkhoff-type theorems

Let Γ be polynomial and $\mathbf{V} \subseteq \mathbf{Set}^{\Gamma}$.

Theorem (Birkhoff variety theorem).

 $\mathsf{Mod}\,\mathsf{Th}\,\mathbf{V}=\mathcal{HSPV}$

Birkhoff-type theorems

Let Γ be polynomial and $\mathbf{V} \subseteq \mathbf{Set}^{\Gamma}$. Theorem (Birkhoff variety theorem). Mod Th $\mathbf{V} = \mathcal{HSPV}$ Theorem (Quasivariety theorem). Mod Imp $\mathbf{V} = \mathcal{SPV}$

Birkhoff-type theorems

Let Γ be polynomial and $\mathbf{V} \subseteq \mathbf{Set}^{\Gamma}$. Theorem (Birkhoff variety theorem). $\mathsf{Mod}\,\mathsf{Th}\,\mathbf{V}=\mathcal{HSPV}$ Theorem (Quasivariety theorem). $\mathsf{Mod}\,\mathsf{Imp}\,\mathbf{V}=\mathcal{SPV}$ Theorem (Horn variety theorem). Mod Horn $\mathbf{V} = \mathcal{SP}^+ \mathbf{V}$

Let Γ : Set \rightarrow Set be a polynomial functor and let $X \in$ Set. We have an adjunction

An *equation* over X is a pair $t_1 =_X t_2$ of elements of UFX, the carrier of the free algebra over X.

$$1 \xrightarrow[t_2]{t_1} UFX$$

An *equation* over X is a pair $t_1 =_X t_2$ of elements of UFX, the carrier of the free algebra over X. We say $\langle A, \alpha \rangle \models t_1 =_X t_2$ iff for every $\sigma: X \to A$, we have $\tilde{\sigma} \circ t_1 = \tilde{\sigma} \circ t_2$.

$$1 \xrightarrow[t_2]{t_1} UFX \xrightarrow[]{\sigma} U\langle A, \alpha \rangle$$

An *equation* over X is a pair $t_1 =_X t_2$ of elements of UFX, the carrier of the free algebra over X. We say $\langle A, \alpha \rangle \models t_1 =_X t_2$ iff for every $\widetilde{\sigma}: FX \to \langle A, \alpha \rangle$, we have $\widetilde{\sigma} \circ t_1 = \widetilde{\sigma} \circ t_2$.

$$1 \xrightarrow[t_2]{t_1} UFX \xrightarrow[\widetilde{\sigma}]{} U\langle A, \alpha \rangle$$

An *equation* over X is a pair $t_1 =_X t_2$ of elements of UFX, the carrier of the free algebra over X.

Let $\langle Q, \nu \rangle$ be the coequalizer of $F1 \xrightarrow[t_2]{\widetilde{t}_2} FX$.

 $\langle A, \alpha \rangle \models t_1 =_X t_2$ iff for every $\tilde{\sigma} : FX \rightarrow \langle A, \alpha \rangle$, there is a homomorphism $\overline{\sigma}$ making the diagram below commute.

An *equation* over X is a pair $t_1 =_X t_2$ of elements of UFX, the carrier of the free algebra over X.

Let $\langle Q, \nu \rangle$ be the coequalizer of $F1 \xrightarrow[t_2]{\widetilde{t_1}} FX$.

 $\langle A, \alpha \rangle \models t_1 =_X t_2$ iff for every $\tilde{\sigma} : FX \rightarrow \langle A, \alpha \rangle$, there is a homomorphism $\overline{\sigma}$ making the diagram below commute.

$$F1 \xrightarrow[\widetilde{t_1}]{} FX \xrightarrow[\widetilde{\tau_2}]{} A, \alpha \rangle$$

$$\downarrow \qquad \exists \overline{\sigma} \\ \langle Q, \nu \rangle$$

 $\operatorname{Hom}(X,A) \cong \operatorname{Hom}(FX,\langle A, \alpha \rangle) \cong \operatorname{Hom}(\langle Q, \nu \rangle, \langle A, \alpha \rangle)$

Consider a set *E* of equations over *X* and say $\langle A, \alpha \rangle \models E$ iff $\langle A, \alpha \rangle \models t_1 = t_2$ for every $t_1 = t_2 \in E$.

Consider a set E of equations over X and say $\langle A, \alpha \rangle \models E$ iff $\langle A, \alpha \rangle \models t_1 = t_2$ for every $t_1 = t_2 \in E$. Then we have a pair of maps

$$E \xrightarrow[e_2]{e_1} UFX$$

Consider a set E of equations over X and say $\langle A, \alpha \rangle \models E$ iff $\langle A, \alpha \rangle \models t_1 = t_2$ for every $t_1 = t_2 \in E$. Then we have a pair of maps

$$FE \xrightarrow[\widetilde{e_1}]{\widetilde{e_2}} FX$$

Then we have a pair of maps

$$FE \xrightarrow[\widetilde{e_1}]{\widetilde{e_2}} FX$$

Let $q:FX \rightarrow \langle Q, \nu \rangle$ be the coequalizer. Then $\langle A, \alpha \rangle \models E$ just in case every $FX \rightarrow \langle A, \alpha \rangle$ factors through q.

Let $f: B \rightarrow C$ be given and $A \in C$. We say that A is *f-injective* if, for every map $B \rightarrow A$ factors through f (not necessarily uniquely).

Let $FE \Longrightarrow FX \longrightarrow \langle Q, \nu \rangle$ be a coequalizer diagram. $\langle A, \alpha \rangle \models E$ iff every $FX \longrightarrow \langle A, \alpha \rangle$ factors through $\langle Q, \nu \rangle$.

$$FE \Longrightarrow FX \xrightarrow{\forall} \langle A, \alpha \rangle$$

$$\downarrow \qquad \exists$$

$$\langle Q, \nu \rangle$$

Let $FE \Longrightarrow FX \longrightarrow \langle Q, \nu \rangle$ be a coequalizer diagram. $\langle A, \alpha \rangle \models E$ iff every $FX \longrightarrow \langle A, \alpha \rangle$ factors through $\langle Q, \nu \rangle$.

 $\langle A, \alpha \rangle \models E$ just in case $\langle A, \alpha \rangle$ is injective with respect to $FX \rightarrow \langle Q, \nu \rangle$.

Some Co-Birkhoff-Type Theorems - p.6/25

 $\langle A, \alpha \rangle \models E$ just in case $\langle A, \alpha \rangle$ is injective with respect to $FX \rightarrow \langle Q, \nu \rangle$.

Thus, injectivity with respect to certain (classes of) arrows gives a notion of generalized equational satisfaction.

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Cone injectivity

A *discrete cone* is a pair $c = \langle B, \{f_i : B \rightarrow C_i\}_{i \in I} \rangle$.

Cone injectivity

A *discrete cone* is a pair $c = \langle B, \{f_i : B \rightarrow C_i\}_{i \in I} \rangle$.

An object A is *injective* with respect to c if every $B \rightarrow A$ factors through some f_i .

Németi and Sain defined, for each composition $\vec{\mathcal{X}} = \mathcal{HS}\Sigma$, $\mathcal{HS}\Sigma^+$, etc., a class of cones, $M_{\vec{\mathcal{X}}} \subseteq \mathsf{SubCat}(\mathsf{Cone}(\mathcal{C}))$.

Németi and Sain defined, for each composition $\vec{\mathcal{X}} = \mathcal{HS}\Sigma$, $\mathcal{HS}\Sigma^+$, etc., a class of cones, $M_{\vec{\mathcal{X}}} \subseteq \mathsf{SubCat}(\mathsf{Cone}(\mathcal{C}))$. For instance, $M_{\mathcal{HSP}}$ consists of those cones such that

Each cone is a single arrow.

Németi and Sain defined, for each composition $\vec{\mathcal{X}} = \mathcal{HS}\Sigma$, $\mathcal{HS}\Sigma^+$, etc., a class of cones, $M_{\vec{\mathcal{X}}} \subseteq \mathsf{SubCat}(\mathsf{Cone}(\mathcal{C}))$. For instance, $M_{\mathcal{HSP}}$ consists of those cones such that

Németi and Sain defined, for each composition $\vec{\mathcal{X}} = \mathcal{HS}\Sigma$, $\mathcal{HS}\Sigma^+$, etc., a class of cones, $M_{\vec{\mathcal{X}}} \subseteq \mathsf{SubCat}(\mathsf{Cone}(\mathcal{C}))$. For instance, $M_{\mathcal{HSP}}$ consists of those cones such that

Németi and Sain defined, for each composition $\vec{\mathcal{X}} = \mathcal{HS}\Sigma$, $\mathcal{HS}\Sigma^+$, etc., a class of cones, $M_{\vec{\mathcal{X}}} \subseteq \mathsf{SubCat}(\mathsf{Cone}(\mathcal{C}))$. Next, we define, for each $\vec{\mathcal{X}}$, an operator

 $K_{\vec{\mathcal{X}}}:\mathsf{SubCat}(\mathcal{C}) \longrightarrow \mathsf{SubCat}(\mathsf{Cocone}(\mathcal{C})).$

 $K_{\vec{\mathcal{X}}}$ V represents the $M_{\vec{\mathcal{X}}}$ -theory of V. That is,

$$K_{\vec{\mathcal{X}}}\mathbf{V} = \{c \in M_{\vec{\mathcal{X}}} \mid \mathbf{V} \subseteq \mathbf{Inj}(c)\}.$$
The game plan

Next, we define, for each $\vec{\mathcal{X}}$, an operator

 $K_{\vec{\mathcal{X}}}:\mathsf{SubCat}(\mathcal{C}) \longrightarrow \mathsf{SubCat}(\mathsf{Cocone}(\mathcal{C})).$

 $K_{\vec{\mathcal{X}}}$ V represents the $M_{\vec{\mathcal{X}}}$ -theory of V. That is,

$$K_{\vec{\mathcal{X}}}\mathbf{V} = \{c \in M_{\vec{\mathcal{X}}} \mid \mathbf{V} \subseteq \mathbf{Inj}(c)\}.$$

Finally, we prove a whole slew of theorems of the form

$$\mathbf{Inj}(M_{\vec{\mathcal{X}}}\mathbf{V}) = \vec{\mathcal{X}}\mathbf{V},$$

greatly impressing everybody.

The game plan

Next, we define, for each $\vec{\mathcal{X}}$, an operator

 $K_{\vec{\mathcal{X}}}:\mathsf{SubCat}(\mathcal{C}) \longrightarrow \mathsf{SubCat}(\mathsf{Cocone}(\mathcal{C})).$

 $K_{\vec{\mathcal{X}}}$ V represents the $M_{\vec{\mathcal{X}}}$ -theory of V. That is,

$$K_{\vec{\mathcal{X}}}\mathbf{V} = \{c \in M_{\vec{\mathcal{X}}} \mid \mathbf{V} \subseteq \mathbf{Inj}(c)\}.$$

Finally, we prove a whole slew of theorems of the form

$$\mathbf{Inj}(M_{\vec{\mathcal{X}}}\mathbf{V}) = \vec{\mathcal{X}}\mathbf{V},$$

greatly impressing everybody.

It's been done.

The game plan

Finally, we prove a whole slew of theorems of the form

$$\mathbf{Inj}(M_{\vec{\mathcal{X}}}\mathbf{V}) = \vec{\mathcal{X}}\mathbf{V},$$

greatly impressing everybody.

It's been done.

Plan B: Turn all the arrows around and see what you get. Hope someone is mildly interested.

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

We assume the following:

• C has all coproducts.

We assume the following:

- C has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.

This assumption appeared earlier in our use of epis. Implicitly, we were using the factorization system $\langle Epi, Mono \rangle$ in Set.

We assume the following:

- \mathcal{C} has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered

A category is *S*-well-powered if for each $C \in C$, the collection

$$\{j \in \mathcal{S} \mid \operatorname{cod}(j) = C\} / \cong$$

is a set.

We assume the following:

- \mathcal{C} has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered
- C has enough S-injectives.

Recall an object C is S-injective if, for all $A \rightarrow B$ in C, and all $A \rightarrow C$, there is an extension $B \rightarrow C$.

We assume the following:

- C has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered
- C has enough S-injectives.

In Set, every non-empty set is Mono-injective.

We assume the following:

- \mathcal{C} has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered
- C has enough S-injectives.

C has *enough injectives* if for every A in C, there is an S-injective C and a S-morphism $A \rightarrow C$.

A *discrete cone* is a pair $c = \langle B, \{f_i : B \rightarrow C_i\}_{i \in I} \rangle$.

A *discrete cocone* is a pair $c = \langle B, \{f_i: C_i \rightarrow B\}_{i \in I} \rangle$.

A *discrete cocone* is a pair $c = \langle B, \{f_i : C_i \rightarrow B\}_{i \in I} \rangle$.

An object A is *injective* with respect to c if every $B \rightarrow A$ factors through some f_i .

A *discrete cocone* is a pair $c = \langle B, \{f_i: C_i \rightarrow B\}_{i \in I} \rangle$.

An object A is *projective* with respect to c if every $A \rightarrow B$ (co-)factors through some f_i .

$$\begin{array}{c} B \xleftarrow{\forall} A \\ \exists f_i & \exists \\ C_i \end{array}$$

Define

 $M_{\mathcal{S}}$ cocones with injective vertex

Define

 $M_{\mathcal{S}}$ cocones with injective vertex

 $M_{\mathcal{H}}$ cocones with *S*-morphisms

Define

 $M_{\mathcal{S}}$ cocones with injective vertex

- $M_{\mathcal{H}}$ cocones with *S*-morphisms
- M_{Σ} cocones with one arrow

Define

 $M_{\mathcal{S}}$ cocones with injective vertex

- $M_{\mathcal{H}}$ cocones with *S*-morphisms
- M_{Σ} cocones with one arrow
- M_{Σ^+} cocones with 0 or 1 arrow

Define

$M_{\mathcal{S}}$	cocones with injective vertex	
$M_{\mathcal{H}}$	cocones with S -morphisms	
M_{Σ}	cocones with one arrow	
M_{Σ^+}	cocones with 0 or 1 arrow	•
	\rightarrow	

For composites $\mathcal{X} = \mathcal{X}_1 \dots \mathcal{X}_n$,

$$M_{\vec{\mathcal{X}}} = M_{\mathcal{X}_1} \cap \ldots \cap M_{\mathcal{X}_n}.$$

Define

$M_{\mathcal{S}}$	cocones with injective vertex	• *
$M_{\mathcal{H}}$	cocones with S -morphisms	
M_{Σ}	cocones with one arrow	$\bullet \longleftarrow \bullet$
M_{Σ^+}	cocones with 0 or 1 arrow	• • •

 $M_{\vec{X}}$ can be considered the language of the theory at hand.

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

We define the following operators

 $\mathsf{SubCat}(\mathcal{C}) \longrightarrow \mathsf{SubCat}(\mathcal{C}).$

We define the following operators

 $\mathsf{SubCat}(\mathcal{C}) {\longrightarrow} \mathsf{SubCat}(\mathcal{C}) \, .$

$$\mathcal{H}\mathbf{V} = \{B \in \mathcal{C} \mid \exists \mathbf{V} \ni C \longrightarrow B\}$$

Note: The symbols \mathcal{H} and \mathcal{S} do double duty, as classes of arrows and also as closure operators.

We define the following operators

 $\mathsf{SubCat}(\mathcal{C}) \longrightarrow \mathsf{SubCat}(\mathcal{C}) \,.$

 $\mathcal{H}\mathbf{V} = \{B \in \mathcal{C} \mid \exists \mathbf{V} \ni C \longrightarrow B\}$ $\mathcal{S}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \rightarrowtail C \in \mathbf{V}\}$

We define the following operators

 $\mathsf{SubCat}(\mathcal{C}) {\longrightarrow} \mathsf{SubCat}(\mathcal{C}) \, .$

$$\mathcal{H}\mathbf{V} = \{B \in \mathcal{C} \mid \exists \mathbf{V} \ni C \longrightarrow B\}$$
$$\mathcal{S}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \rightarrowtail C \in \mathbf{V}\}$$
$$\Sigma\mathbf{V} = \{B \in \mathcal{C} \mid \exists \{A_i\}_{i \in I} \subseteq \mathbf{V} . B \cong \coprod A_i\}$$

We define the following operators

 $\mathsf{SubCat}(\mathcal{C}) \longrightarrow \mathsf{SubCat}(\mathcal{C}).$

 $\mathcal{H}\mathbf{V} = \{B \in \mathcal{C} \mid \exists \mathbf{V} \ni C \longrightarrow B\}$ $\mathcal{S}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \rightarrowtail C \in \mathbf{V}\}$ $\Sigma\mathbf{V} = \{B \in \mathcal{C} \mid \exists \{A_i\}_{i \in I} \subseteq \mathbf{V} . B \cong \coprod A_i\}$ $\Sigma^+\mathbf{V} = \{B \in \mathcal{C} \mid \exists \{A_i\}_{i \in I} \subseteq \mathbf{V} . B \cong \coprod A_i, \ I \neq \emptyset\}$

Let $\vec{\mathcal{X}}$ be a composite of \mathcal{S} , \mathcal{H} , Σ and Σ^+ such that

• the operators occur in the order above;

Let $\vec{\mathcal{X}}$ be a composite of \mathcal{S} , \mathcal{H} , Σ and Σ^+ such that

- the operators occur in the order above;
- \mathcal{H} occurs in $\vec{\mathcal{X}}$.

Let $\vec{\mathcal{X}}$ be a composite of \mathcal{S} , \mathcal{H} , Σ and Σ^+ such that

- the operators occur in the order above;
- \mathcal{H} occurs in $\vec{\mathcal{X}}$.
- I.e., let $\vec{\mathcal{X}}$ be one of

 $\mathcal{H}, \mathcal{H}\Sigma, \mathcal{H}\Sigma^+, \mathcal{SH}, \mathcal{SH}\Sigma, \mathcal{SH}\Sigma^+$

Let $\vec{\mathcal{X}}$ be a composite of \mathcal{S} , \mathcal{H} , Σ and Σ^+ such that

- the operators occur in the order above;
- \mathcal{H} occurs in $\vec{\mathcal{X}}$.
- I.e., let $\vec{\mathcal{X}}$ be one of

 $\mathcal{H}, \mathcal{H}\Sigma, \mathcal{H}\Sigma^+, \mathcal{SH}, \mathcal{SH}\Sigma, \mathcal{SH}\Sigma^+$

$$\operatorname{Proj}(K_{\vec{\mathcal{X}}}\mathbf{V}) = \vec{\mathcal{X}}\mathbf{V}$$

Here, $K_{\vec{\mathcal{X}}}\mathbf{V} = \{c \in M_{\mathbf{V}} \mid \mathbf{V} \subseteq \operatorname{Proj}(c)\}$

Let $\vec{\mathcal{X}}$ be a composite of \mathcal{S} , \mathcal{H} , Σ and Σ^+ such that

- the operators occur in the order above;
- \mathcal{H} occurs in $\vec{\mathcal{X}}$.
- I.e., let $\vec{\mathcal{X}}$ be one of

 $\mathcal{H}, \mathcal{H}\Sigma, \mathcal{H}\Sigma^+, \mathcal{SH}, \mathcal{SH}\Sigma, \mathcal{SH}\Sigma^+$

$$\mathbf{Proj}(K_{\vec{\mathcal{X}}}\mathbf{V}) = \vec{\mathcal{X}}\mathbf{V}$$

Compare: Mod Th $\mathbf{V} = \mathcal{HSPV}$ (Birkhoff)

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Categories of coalgebras

Let C satisfy our previous requirements and $\Gamma: C \to C$ be given. Let $U: C_{\Gamma} \to C$ be the forgetful functor.

• U creates coproducts, so C_{Γ} has them.
Let C satisfy our previous requirements and $\Gamma: C \rightarrow C$ be given. Let $U: C_{\Gamma} \rightarrow C$ be the forgetful functor.

- U creates coproducts, so C_{Γ} has them.
- If Γ preserves S-morphisms, then $\langle U^{-1}\mathcal{H}, U^{-1}\mathcal{S} \rangle$ form a factorization system for \mathcal{C}_{Γ} .

Let C satisfy our previous requirements and $\Gamma: C \rightarrow C$ be given. Let $U: C_{\Gamma} \rightarrow C$ be the forgetful functor.

- U creates coproducts, so C_{Γ} has them.
- If Γ preserves S-morphisms, then $\langle U^{-1}\mathcal{H}, U^{-1}\mathcal{S} \rangle$ form a factorization system for C_{Γ} .
- C_{Γ} is $U^{-1}S$ -well-powered.

Let C satisfy our previous requirements and $\Gamma: C \rightarrow C$ be given. Let $U: C_{\Gamma} \rightarrow C$ be the forgetful functor.

- U creates coproducts, so C_{Γ} has them.
- If Γ preserves S-morphisms, then $\langle U^{-1}\mathcal{H}, U^{-1}\mathcal{S} \rangle$ form a factorization system for \mathcal{C}_{Γ} .
- C_{Γ} is $U^{-1}S$ -well-powered.
- If $U \dashv H$, then C_{Γ} has enough (cofree) injectives.

Let C satisfy our previous requirements and $\Gamma: C \to C$ be given. Let $U: C_{\Gamma} \to C$ be the forgetful functor.

- U creates coproducts, so C_{Γ} has them.
- If Γ preserves S-morphisms, then $\langle U^{-1}\mathcal{H}, U^{-1}\mathcal{S} \rangle$ form a factorization system for \mathcal{C}_{Γ} .
- C_{Γ} is $U^{-1}S$ -well-powered.
- If $U \dashv H$, then \mathcal{C}_{Γ} has enough (cofree) injectives.

Thus, if Γ preserves S-morphisms and C_{Γ} has cofree coalgebras, then C_{Γ} satisfies our abstract setting.

Let C satisfy our previous requirements and $\Gamma: C \rightarrow C$ be given. Let $U: C_{\Gamma} \rightarrow C$ be the forgetful functor.

- U creates coproducts, so C_{Γ} has them.
- If Γ preserves S-morphisms, then $\langle U^{-1}\mathcal{H}, U^{-1}\mathcal{S} \rangle$ form a factorization system for \mathcal{C}_{Γ} .
- C_{Γ} is $U^{-1}S$ -well-powered.
- If $U \dashv H$, then \mathcal{C}_{Γ} has enough (cofree) injectives.

Moreover, we may restrict our attention to cocones with cofree vertices, in the case that $\vec{\mathcal{X}}$ contains \mathcal{S} .

Fix an alphabet \mathcal{I} . Let

$$\Gamma: \mathbf{Set} \longrightarrow \mathbf{Set}$$

be the functor

 $X \mapsto 2 \times X^{\mathcal{I}}.$

Fix an alphabet \mathcal{I} . Let

$$\Gamma: \mathbf{Set} \longrightarrow \mathbf{Set}$$

be the functor

$$X \mapsto 2 \times X^{\mathcal{I}}.$$

A Γ -coalgebra $\langle A, \alpha \rangle$ is an automaton accepting input from \mathcal{I} and outputting either 0 or 1, where

$$\operatorname{out}_{\alpha}(a) = \pi_1 \circ \alpha(a)$$

 $\operatorname{trans}_{\alpha}(a) = \pi_2 \circ \alpha(a)$

Let $\sigma \in \mathcal{I}^{<\omega}$ and define

$$\mathsf{eval}_{\alpha}: A \times \mathcal{I}^{<\omega} \longrightarrow A$$

by

$$eval_{\alpha}(a, ()) = a,$$

 $eval_{\alpha}(a, \sigma * i) = trans_{\alpha}(eval_{\alpha}(a, \sigma))(i).$

 $eval_{\alpha}(a, \sigma)$ is the final state of the calculation beginning in a with input σ .

Define

$$\operatorname{acc}_{\alpha}: A \longrightarrow \mathcal{P}(\mathcal{I}^{<\omega})$$

by

$$\operatorname{acc}_{\alpha}(a) = \{ \sigma \in \mathcal{I}^{<\omega} \mid \operatorname{out}_{\alpha} \circ \operatorname{eval}_{\alpha}(a, \sigma) = 1 \}.$$

$\operatorname{acc}_{\alpha}(a)$ is the set of all words accepted by state a.

Some classes of automata

Fix a language $\mathcal{L} \subseteq \mathcal{I}^{<\omega}$.

 $\mathbf{V}\{\langle A,\,\alpha\rangle\,|\,\ldots\}$

V closed under

 $\mathcal{SH}\Sigma$

 $\forall a \in A . \ \mathsf{acc}(a) = \mathcal{L}$

Some Co-Birkhoff-Type Theorems -p.20/25

Some classes of automataFix a language $\mathcal{L} \subseteq \mathcal{I}^{<\omega}$. $V\{\langle A, \alpha \rangle \mid \ldots\}$ V closed under $\forall a \in A. \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{SH}\Sigma$ $A \neq \emptyset \Rightarrow \exists a \in A. \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma$

Some classes of automataFix a language $\mathcal{L} \subseteq \mathcal{I}^{<\omega}$. $V\{\langle A, \alpha \rangle \mid \ldots\}$ V closed under $\forall a \in A. \operatorname{acc}(a) = \mathcal{L}$ $\forall a \in A. \operatorname{acc}(a) = \mathcal{L}$ $A \neq \emptyset \Rightarrow \exists a \in A. \operatorname{acc}(a) = \mathcal{L}$ $\exists a \in A. \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma^+$

Some classes of automata Fix a language $\mathcal{L} \subset \mathcal{I}^{<\omega}$. $\mathbf{V}\{\langle A, \alpha \rangle \mid \ldots\}$ V closed under $\forall a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{SH}\Sigma$ $A \neq \emptyset \Rightarrow \exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma$ $\mathcal{H}\Sigma^+$ $\exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L}$ \mathcal{H}

Some classes of automata Fix a language $\mathcal{L} \subset \mathcal{I}^{<\omega}$. $\mathbf{V}\{\langle A, \alpha \rangle \mid \ldots\}$ V closed under $\forall a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{SH}\Sigma$ $A \neq \emptyset \Rightarrow \exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma$ $\exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma^+$ $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L}$ \mathcal{H} $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L} \text{ and } \forall b \in A . b \longrightarrow^* a$ SH

Some classes of automata Fix a language $\mathcal{L} \subset \mathcal{I}^{<\omega}$. $\mathbf{V}\{\langle A, \alpha \rangle \mid \ldots\}$ V closed under $\forall a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{SH}\Sigma$ $A \neq \emptyset \Rightarrow \exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma$ $\exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}\Sigma^+$ $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L}$ \mathcal{H} $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L} \text{ and } \forall b \in A . b \longrightarrow^* a$ \mathcal{SH} In fact, there's a "hidden" closure operator here.

Some classes of automata Fix a language $\mathcal{L} \subset \mathcal{I}^{<\omega}$. $\mathbf{V}\{\langle A, \alpha \rangle \mid \ldots\}$ V closed under $\forall a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}^{-}\mathcal{SH}\Sigma$ $A \neq \emptyset \Rightarrow \exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}^-\mathcal{H}\Sigma$ $\exists a \in A . \operatorname{acc}(a) = \mathcal{L}$ $\mathcal{H}^-\mathcal{H}\Sigma^+$ $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L}$ \mathcal{H} $\exists ! a \in A . \operatorname{acc}(a) = \mathcal{L} \text{ and } \forall b \in A . b \longrightarrow a$ \mathcal{SH} The \mathcal{H}^- operator closes a class of coalgebras under domains of \mathcal{H} -morphisms.

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
 - V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Outline

- I. Some Birkhoff-type theorems
- II. Equations and injectivity
- III. Injectivity and cones
- IV. The abstract setting
- V. Projectivity and cocones
- VI. A cornucopia of closure operators
- VII. A slew of theorems
- VIII. Categories of coalgebras
 - IX. Classes of automata
 - X. Behavioral classes

Consider the following operators.

$$\mathcal{H}^{-}\mathbf{V} = \{ B \in \mathcal{C} \mid \exists B \longrightarrow A \in \mathbf{V} \}$$

Consider the following operators.

$$\mathcal{H}^{-}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \longrightarrow A \in \mathbf{V}\}$$
$$B\mathbf{V} = \{B \in \mathcal{C} \mid \exists \text{ relation } B \twoheadleftarrow R \longrightarrow A \in \mathbf{V}\}$$

Here, a relation is an S-morphism $R \rightarrow B \times A$ (we assume that C has finite products).

Consider the following operators.

$$\mathcal{H}^{-}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \longrightarrow A \in \mathbf{V}\}$$
$$B\mathbf{V} = \{B \in \mathcal{C} \mid \exists \text{ relation } B \twoheadleftarrow R \longrightarrow A \in \mathbf{V}\}$$
$$Q\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \twoheadleftarrow C \longrightarrow A \in \mathbf{V}\}$$

$$\mathcal{H}^{-}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \longrightarrow A \in \mathbf{V}\}$$
$$B\mathbf{V} = \{B \in \mathcal{C} \mid \exists \text{ relation } B \twoheadleftarrow R \longrightarrow A \in \mathbf{V}\}$$
$$Q\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \twoheadleftarrow C \longrightarrow A \in \mathbf{V}\}$$

$$\mathcal{H}^{-}\mathcal{H}\mathbf{V} = BB\mathbf{V} = QQ\mathbf{V}.$$

Some Co-Birkhoff-Type Theorems – p.22/25

$$\mathcal{H}^{-}\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \longrightarrow A \in \mathbf{V}\}$$
$$B\mathbf{V} = \{B \in \mathcal{C} \mid \exists \text{ relation } B \twoheadleftarrow R \longrightarrow A \in \mathbf{V}\}$$
$$Q\mathbf{V} = \{B \in \mathcal{C} \mid \exists B \twoheadleftarrow C \longrightarrow A \in \mathbf{V}\}$$

 $\mathcal{H}^{-}\mathcal{H}\mathbf{V} = BB\mathbf{V} = QQ\mathbf{V}.$ If, in \mathcal{E} , epis are stable under pullback, then also $\mathcal{H}^{-}\mathcal{H}\mathbf{V} = B\mathbf{V} = Q\mathbf{V}.$

The cocone classes $M_{\vec{\mathcal{X}}}$

Recall

 M_S cocones with injective vertex $M_{\mathcal{H}}$ cocones with S-morphisms M_{Σ} cocones with one arrow M_{Σ^+} cocones with 0 or 1 arrow

The cocone classes $M_{\vec{\mathcal{X}}}$

- $M_{\mathcal{S}}$ cocones with injective vertex
- $M_{\mathcal{H}}$ cocones with S-morphisms
- M_{Σ} cocones with one arrow
- M_{Σ^+} cocones with 0 or 1 arrow
- $M_{\mathcal{H}^-}$ cocones with vertex ≤ 1

The cocone classes $M_{\vec{\mathcal{X}}}$

- $M_{\mathcal{S}}$ cocones with injective vertex
- $M_{\mathcal{H}}$ cocones with *S*-morphisms
- M_{Σ} cocones with one arrow
- M_{Σ^+} cocones with 0 or 1 arrow
- $M_{\mathcal{H}^-}$ cocones with vertex ≤ 1

As before, for composites $\vec{\mathcal{X}} = \mathcal{X}_1 \dots \mathcal{X}_n$,

$$M_{\vec{\mathcal{X}}} = M_{\mathcal{X}_1} \cap \ldots \cap M_{\mathcal{X}_n}.$$
Some Co-Birkhoff-Type Theorems – p.23/25

The cocone classes $M_{\vec{X}}$

- $M_{\mathcal{S}}$ cocones with injective vertex
- $M_{\mathcal{H}}$ cocones with S-morphisms
- M_{Σ} cocones with one arrow
- M_{Σ^+} cocones with 0 or 1 arrow
- $M_{\mathcal{H}^-}$ cocones with vertex ≤ 1

Also as before, $K_{\vec{\mathcal{X}}}\mathbf{V} = \{c \in M_{\vec{\mathcal{X}}} \mid \mathbf{V} \subseteq \mathbf{Proj}(\vec{\mathcal{X}})\}.$

An augmented slew

Let $\vec{\mathcal{X}}$ be a composite of \mathcal{H}^- , \mathcal{S} , \mathcal{H} , Σ and Σ^+ such that

- the operators occur in the order above;
- \mathcal{H} occurs in $\vec{\mathcal{X}}$.

$$\mathbf{Proj}(K_{\vec{\mathcal{X}}}\mathbf{V}) = \vec{\mathcal{X}}\mathbf{V}$$

Upcoming topics

• What happened to coequations?

Upcoming topics

- What happened to coequations?
- What is the formal dual to Birkhoff's completeness theorem?

Upcoming topics

- What happened to coequations?
- What is the formal dual to Birkhoff's completeness theorem?
- What is the analogue to Birkhoff's completeness theorem (and the corresponding theorem for conditional coequations)?