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A brief refresher
Let C satisfy the following conditions.

• C has all coproducts.

• C has a factorization system 〈H, S〉.

• C is S-well-powered

• C has enough S-injectives.
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A brief refresher
Let C satisfy the following conditions.

• C has all coproducts.

• C has a factorization system 〈H, S〉.

• C is S-well-powered

• C has enough S-injectives.

Let Γ:C //C preserve S-morphisms and suppose, further,
that U :CΓ

//C has a right adjoint H .
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A brief refresher
Let C satisfy the following conditions.

• C has all coproducts.

• C has a factorization system 〈H, S〉.

• C is S-well-powered

• C has enough S-injectives.

Let Γ:C //C preserve S-morphisms and suppose, further,
that U :CΓ

//C has a right adjoint H . Then, we know that
CΓ satisfies the above conditions as well. Furthermore, U
creates the factorization system in CΓ and CΓ has enough
cofree S-injectives.
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A brief refresher
A coequation over C is an (isomorphism class of)
S-morphism(s), P // //UHC .
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A brief refresher
A coequation over C is an (isomorphism class of)
S-morphism(s), P // //UHC .
A coalgebra 〈A, α〉 satisfies P iff for every
p :〈A, α〉 //HC , Im(p) ≤ HC.

A
∀p

//

∃
##

UHC

P

OO

OO
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A coalgebra 〈A, α〉 satisfies P iff for every
p :〈A, α〉 //HC , Im(p) ≤ HC.

A
∀p

//

∃
##

UHC

P

OO

OO

Hereafter, we further assume that C has all meets of
S-morphisms.
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A brief refresher
A coalgebra 〈A, α〉 satisfies P iff for every
p :〈A, α〉 //HC , Im(p) ≤ HC.

A
∀p

//

∃
##

UHC

P

OO

OO

Hereafter, we further assume that C has all meets of
S-morphisms.
We denote the isomorphism classes of S-morphisms
P //C in C by Sub(C) – however, this notation is merely
suggestive.
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A coequational language
Fix a S-injective C ∈ C. We define a simple language
LCoeq (properly, LC

Coeq).

• For every P in Sub(UHC), we introduce an atomic
proposition P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then
∃y(ϕ(y) ∧ h(y) = x) is in LCoeq.
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A coequational language
• For every P in Sub(UHC), we introduce an atomic proposition

P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ∃y(ϕ(y) ∧ h(y) = x) is in

LCoeq.

We define an interpretation

�

−

�

:LCoeq
// Sub(UHC):

�
P

�

= P
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Satisfaction
We say that a coalgebra 〈A, α〉 satisfies a formula
ϕ ∈ LCoeq (written 〈A, α〉 |= ϕ) just in case 〈A, α〉 |=

�

ϕ

�

in the sense of our previous talk.
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Satisfaction
We say that a coalgebra 〈A, α〉 satisfies a formula
ϕ ∈ LCoeq (written 〈A, α〉 |= ϕ) just in case 〈A, α〉 |=

�

ϕ

�

in the sense of our previous talk.
That is, 〈A, α〉 |= ϕ just in case every homomorphism
〈A, α〉 //HC factors through the inclusion

�
ϕ

�
// //HC .

A
∀p

//

∃ ""

UHC

�
ϕ

�
OO

OO
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For a set S ⊆ LCoeq, we say that 〈A, α〉 |= S just in case
〈A, α〉 |= ϕ for each ϕ ∈ S.
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Satisfaction
That is, 〈A, α〉 |= ϕ just in case every homomorphism
〈A, α〉 //HC factors through the inclusion

�

ϕ

�

// //HC .

A
∀p

//

∃ ""

UHC

�

ϕ

�

OO

OO

For a set S ⊆ LCoeq, we say that 〈A, α〉 |= S just in case
〈A, α〉 |= ϕ for each ϕ ∈ S.

We say that a collection V ⊆ CΓ satisfies S if each 〈A, α〉 ∈

V satisfies S.
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(Pre-)complete sets of formulas
Recall our definition of generating coequation for a
collection of coalgebras V.
GenV satisfies the following fixed point description.

• V |= GenV;

• If V |= P ′, then GenV ` P ′.
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(Pre-)complete sets of formulas
Call a set S ⊆ LCoeq of coequations over C pre-complete if
there is a ϕ ∈ S such that

�

ϕ

�

= Gen Mod(S).
Call S complete if, for every ϕ such that Mod(S) |= ϕ, we
have ϕ ∈ S.
We write ϕ ` ψ just in case

�

ϕ

�

`

�

ψ

�

, that is, just in case
there is a morphism

�

ϕ

�

//

�

ψ

�

making the diagram below
commute.

�

ϕ

� �

ψ
�

UHC

//

��

��
,,
, ��

����
�
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(Pre-)complete sets of formulas
Call a set S ⊆ LCoeq of coequations over C pre-complete if
there is a ϕ ∈ S such that

�

ϕ

�

= Gen Mod(S).
Call S complete if, for every ϕ such that Mod(S) |= ϕ, we
have ϕ ∈ S.
A pre-complete set S is complete just in case it is
upward-closed, in the sense that if ϕ ` ψ and ϕ ∈ S, then
ψ ∈ S.
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A sound rule

An inference rule
ϕ1 . . . ϕn

ψ is sound just in case,

whenever 〈A, α〉 |= ϕ1, . . . , 〈A, α〉 |= ϕn, then
〈A, α〉 |= ψ.

Theorem.
∧

-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤ ϕi . But we know Im(p) ≤
∧

ϕi ≤ ϕi .
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A sound rule
Theorem.

∧
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�
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�
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A sound rule
Theorem.

∧
-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤

�

ϕi

�

. But we know Im(p) ≤

� ∧
ϕi

�
≤

�

ϕi

�

.

This is a sound rule, but it’s quite useless for our purposes.

A Step Towards Deductive Completeness – p.8/23



A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ
-I

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

If Im(p :〈A, α〉 //HC ) ≤

�

ϕi

�

for each i ∈ I , then Im(p) ≤∧ �

ϕi

�

.
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

If Im(p : 〈A, α〉 //HC ) ≤

�

ϕ

�

, then Im(p) ≤

� �

ϕ

�

(be-

cause Im(p) is a subcoalgebra contained in ϕ).
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

Here, Subst applies for every Γ-homomorphism

h :HC //HC .
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

Let p :HC //HC be given.

Im(p) ≤ h∗

�

ϕ

�

iff ∃h Im(p) ≤

�

ϕ

�

.
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧
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ϕ ϕ ` ψ
DSR

ψ

Let p :HC //HC be given.

Im(p) ≤ h∗

�

ϕ

�

iff Im(h ◦ p) ≤

�

ϕ

�

.

Hence, if for every q :HC //HC , Im(q) ≤

�

ϕ

�

, then

Im(p) ≤ h∗

�

ϕ

�

.
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

Let’s call this logic G (for pretty good logic).
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

This is clearly a sound rule – if every map 〈A, α〉 //HC

factors through

�

ϕ

�

and

�

ϕ

�

≤

�

ψ
�

then every such mor-

phism also factors through

�

ψ

�

.
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

However, it’s not a rule we would generally like in our so-

called logic, as it depends on the semantics of ϕ and ψ.

Hence, we call it DSR for Damned Semantic Rule.
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A coequational calculus
The following rules are sound.

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Subst

ϕ(h(x))

ϕ ϕ ` ψ
DSR

ψ

We call the logic G+ DSR a not-so-good logic, N .
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

In other terms,

� �

ϕ

�

=

� ∧
{ϕ(h(x)) | h :HC //HC}

�

.
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∃k

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤

�

ϕ

�

.
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Lemma.
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�
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∧
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�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ k∗

�

ϕ

�

.
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Lemma.
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=
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Proof. Recall
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ϕ
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=
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{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ k∗

�

ϕ

�

.

⊆: It suffices to show that for all k :HC //HC ,

� �
ϕ

�

≤ k∗

�

ϕ

�

.
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∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ k∗

�

ϕ

�

.

⊆: It suffices to show that for all k :HC //HC ,
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�
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ϕ
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ k∗

�

ϕ

�

.

⊆: It suffices to show that for all k :HC //HC ,

∃k

� �

ϕ

�

≤

�

ϕ

�

.

But,

� �

ϕ

�

is invariant, so ∃k

� �

ϕ

�

≤

� �

ϕ

�

≤ ϕ.
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G is pre-complete
Let DedG(S) denote the deductive closure of S under the

logic G. We claim that for every S, DedG(S) is pre-

complete.
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G is pre-complete
Let DedG(S) denote the deductive closure of S under the
logic G. We claim that for every S, DedG(S) is
pre-complete.
Theorem. Let S ⊆ LCoeq. Then DedG(S) is pre-complete.
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G is pre-complete
Theorem. Let S ⊆ LCoeq. Then DedG(S) is pre-complete.

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
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G is pre-complete
Theorem. Let S ⊆ LCoeq. Then DedG(S) is pre-complete.

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
Subst

{ψ(h(x)) | h :HC //HC }
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G is pre-complete
Theorem. Let S ⊆ LCoeq. Then DedG(S) is pre-complete.

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
Subst

{ψ(h(x)) | h :HC //HC } ∧
-I∧

{ψ(h(x)) | h :HC //HC }
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G is pre-complete
Theorem. Let S ⊆ LCoeq. Then DedG(S) is pre-complete.

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
Subst

{ψ(h(x)) | h :HC //HC } ∧
-I∧

{ψ(h(x)) | h :HC //HC } �

-I

�

∧
{ψ(h(x)) | h :HC //HC }
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G is pre-complete
Theorem. Let S ⊆ LCoeq. Then DedG(S) is pre-complete.

Proof. So, we see that S `

�

∧
{ψ(h(x)) | h :HC //HC }. Now,

by the lemma,

� �

∧
{ψ(h(x)) | h :HC //HC }

�

=
� � �

ψ

�

,

and by the Invariance Theorem,

� � �

ψ

�

≤
�

ϕ
�

.
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DedN S is complete.

Theorem. Let S ⊆ LCoeq and let DedN(S) denote the

deductive closure of S with respect to N . Then
DedN(S) is complete.
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DedN S is complete.

Theorem. Let S ⊆ LCoeq and let DedN(S) denote the

deductive closure of S with respect to N . Then
DedN(S) is complete.

Proof. Recall that N is G+ DSR, where DSR is the
rule

ϕ ϕ ` ψ
ψ
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DedN S is complete.

Theorem. Let S ⊆ LCoeq and let DedN(S) denote the

deductive closure of S with respect to N . Then
DedN(S) is complete.

Proof. Recall that N is G+ DSR, where DSR is the
rule

ϕ ϕ ` ψ
ψ

Hence, DedN(S) is the upward closure of DedG(S),
which is pre-complete.
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.

A
p

//

""EE
EE

EE
EE

E UHC

�

ϕ

�

OO

OO

⇒

A
p

//

""EE
EE

EE
EE

E UHC

�

ψ

�
OO

OO

Reminder: This is not the same as (〈A, α〉 6|= ϕ or
〈A, α〉 |= ψ). That would be true if either there is some p
such that Im(p) 6≤

�

ϕ

�

or for all p, Im(p) ≤

�

ψ

�

.
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.

A
p

//

""EE
EE

EE
EE

E UHC

�

ϕ

�

OO

OO

⇒

A
p

//

""EE
EE

EE
EE

E UHC

�

ψ

�
OO

OO

This is also not the same as 〈A, α〉 |= ¬ϕ ∨ ψ (if
Sub(UHC) is a Heyting algebra).
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.

A
p

//

""EE
EE

EE
EE

E UHC

�

ϕ

�

OO

OO

⇒

A
p

//

""EE
EE

EE
EE

E UHC

�

ψ

�
OO

OO

Note:
〈A, α〉 |= ϕ iff 〈A, α〉 |= > ⇒ ϕ,

where > = (HC HC ).

A Step Towards Deductive Completeness – p.15/23



Outline
I. A coequational language

II. A coequational calculus

III. DedG S is pre-complete

IV. DedN S is complete

V. An implicational language

VI. An implicational calculus

VII. DedGi S is pre-complete

VIII. DedN i S is complete

A Step Towards Deductive Completeness – p.16/23



Outline
I. A coequational language

II. A coequational calculus

III. DedG S is pre-complete

IV. DedN S is complete

V. An implicational language

VI. An implicational calculus

VII. DedGi S is pre-complete

VIII. DedN i S is complete

A Step Towards Deductive Completeness – p.16/23



An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

-I
ϕ⇒ ϕ

(∃x(ϕ(x) ∧ h(x) = y)) ⇒ ψ
Subst

ϕ⇒ ψ(h(x))

ϕ⇒ ψ ψ ⇒ ϑ
Cut

ϕ⇒ ϑ

ϕ⇒ ψ ψ ` ϑ
DSR

ϕ⇒ ϑ
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

� -I
ϕ⇒

�

ϕ

(∃x(ϕ(x) ∧ h(x) = y)) ⇒ ψ
Subst

ϕ⇒ ψ(h(x))

ϕ⇒ ψ ψ ⇒ ϑ
Cut

ϕ⇒ ϑ

ϕ⇒ ψ ψ ` ϑ
DSR

ϕ⇒ ϑ

Let’s call this logic Gi, again because it seems a reasonably

good logic.
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

� -I
ϕ⇒

�

ϕ

(∃x(ϕ(x) ∧ h(x) = y)) ⇒ ψ
Subst

ϕ⇒ ψ(h(x))

ϕ⇒ ψ ψ ⇒ ϑ
Cut

ϕ⇒ ϑ

ϕ⇒ ψ ψ ` ϑ
DSR

ϕ⇒ ϑ

It’s that damned semantic rule again. Let’s call this N i for

not so good implicational logic.
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A couple of handy operators
We say that a coequation ϕ is S -minimal just in case,
whenever S |= ϕ⇒ ψ, then ϕ ` ψ.
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A couple of handy operators
We say that a coequation ϕ is S -minimal just in case,
whenever S |= ϕ⇒ ψ, then ϕ ` ψ.
Given S ⊆ LImp, define two operators
Sub(UHC) // Sub(UHC):

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS(ϕ) =
∨

{ψ ≤ ϕ | ψ ∈ S -minimal}
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A couple of handy operators
We say that a coequation ϕ is S -minimal just in case,
whenever S |= ϕ⇒ ψ, then ϕ ` ψ.
Given S ⊆ LImp, define two operators
Sub(UHC) // Sub(UHC):

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS(ϕ) =
∨

{ψ ≤ ϕ | ψ ∈ S -minimal}

consS ϕ is the meet of the consequents of ϕ in S.
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A couple of handy operators

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS(ϕ) =
∨

{ψ ≤ ϕ | ψ ∈ S -minimal}

Lemma. entS(ϕ) is S -minimal, and hence is the
greatest S -minimal subobject below ϕ.
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A couple of handy operators

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS(ϕ) =
∨

{ψ ≤ ϕ | ψ ∈ S -minimal}

Lemma.

entS ϕ =
∧

{ψ | Mod(S) |= ϕ⇒ ψ}
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A couple of handy operators

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS(ϕ) =
∨

{ψ ≤ ϕ | ψ ∈ S -minimal}

Lemma.

entS ϕ =
∧

{ψ | Mod(S) |= ϕ⇒ ψ}

So, S is pre-complete iff for every ϕ, we have ϕ ⇒

entS ϕ ∈ S. Our goal is to show that DedGi S contains

ϕ⇒ entS ϕ.
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Definition of EIEIO

Call an operator �

:LImp
//LImp an

endomorphism-invariant interior operator (EIEIO) just
in case it satisfies the following axioms.

S/C	

ϕ `

� 	

ϕ

ϕ ` ψ
Monotone

ϕ ` ψ

Deflationary
ϕ ` ϕ

Idempotent
ϕ ` ϕ

h :HC //HC
FEI

∃x( ϕ(x) ∧ h(x) = y) ` (∃x(ϕ(x) ∧ h(x) = y))
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:LImp
//LImp an

endomorphism-invariant interior operator (EIEIO) just
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ϕ `

� 	
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ψ

Deflationary
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Call an operator �

:LImp
//LImp an

endomorphism-invariant interior operator (EIEIO) just
in case it satisfies the following axioms.

S/C	

ϕ `

� 	

ϕ

ϕ ` ψ
Monotone	

ϕ `

	

ψ

Deflationary	

ϕ ` ϕ
Idempotent	

ϕ `
	 	

ϕ

h :HC //HC
FEI

∃x( ϕ(x) ∧ h(x) = y) ` (∃x(ϕ(x) ∧ h(x) = y))
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Definition of EIEIO

Call an operator �

:LImp
//LImp an

endomorphism-invariant interior operator (EIEIO) just
in case it satisfies the following axioms.

S/C	

ϕ `

� 	

ϕ

ϕ ` ψ
Monotone	

ϕ `

	

ψ

Deflationary	

ϕ ` ϕ
Idempotent	

ϕ `
	 	

ϕ

h :HC //HC
FEI

∃x(

	

ϕ(x) ∧ h(x) = y) `
	

(∃x(ϕ(x) ∧ h(x) = y))
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Definition of EIEIO

S/C	

ϕ `

� 	

ϕ

ϕ ` ψ
Monotone	

ϕ `

	

ψ

Deflationary	

ϕ ` ϕ
Idempotent	

ϕ `

	 	

ϕ

h :HC //HC
FEI

∃x(

	

ϕ(x) ∧ h(x) = y) `

	

(∃x(ϕ(x) ∧ h(x) = y))

In other words, an operator � is EIEIO just in case

•

� is a comonad (deflationary, idempotent, monotone);

•

� is fully endomorphism invariant – for all
h :HC //HC ,
∃x(

�

ϕ(x) ∧ h(x) = y) `

�

(∃x(ϕ(x) ∧ h(x) = y)).
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DedGi S is pre-complete.
Lemma. entS is the greatest EIEIO suboperator of

�

◦ consS. That is, entS ≤

�

◦ consS and for every

�

:Sub(UHC) // Sub(UHC) in EIEIO such that

�

≤

�

◦ consS, also

�

≤ entS.
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DedGi S is pre-complete.
Lemma. entS is the greatest EIEIO suboperator of

�

◦ consS. That is, entS ≤

�

◦ consS and for every

�

:Sub(UHC) // Sub(UHC) in EIEIO such that

�

≤

�

◦ consS, also

�

≤ entS.

Lemma. If S is deductively closed, then consS is an
EIEIO. In other words, consDed

Gi S is an EIEIO.
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DedGi S is pre-complete.
Lemma. If S is deductively closed, then consS is an
EIEIO. In other words, consDed

Gi S is an EIEIO.

Corollary. consDed
Gi S = entS.
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DedGi S is pre-complete.
Corollary. consDed

Gi S = entS.

Proof. consDed
Gi S is an EIEIO and a suboperator of

�

◦ consS.
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Gi S is an EIEIO and a suboperator of
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DedGi S is pre-complete.
Corollary. consDed

Gi S = entS.

Proof. consDed
Gi S is an EIEIO and a suboperator of

�

◦ consS. Hence, consDed
Gi S ≤ entS. The other

inclusion follows from the fact that Gi is sound.
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DedGi S is pre-complete.

Theorem. DedGi S is pre-complete.
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DedGi S is pre-complete.

Theorem. DedGi S is pre-complete.

Proof. It suffices to show that DedGi S contains
ϕ⇒ entS ϕ for each ϕ ∈ LCoeq.
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Theorem. DedGi S is pre-complete.

Proof. It suffices to show that DedGi S contains
ϕ⇒ entS ϕ for each ϕ ∈ LCoeq. Thus, it suffices to
show that DedGi S contains each ϕ⇒ consDed

Gi S ϕ.
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DedGi S is pre-complete.

Theorem. DedGi S is pre-complete.

Proof. It suffices to show that DedGi S contains
ϕ⇒ entS ϕ for each ϕ ∈ LCoeq. Thus, it suffices to
show that DedGi S contains each ϕ⇒ consDed

Gi S ϕ.
This is clear, since

consDed
Gi S ϕ =

∧
{ψ | ϕ⇒ ψ ∈ DedGi S}

and DedGi S is closed under the rule
{ϕ⇒ ψi}i∈I

∧
-I

ϕ⇒
∧

ψi
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DedN i S is complete.

Theorem. DedN i S is complete.
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DedN i S is complete.

Theorem. DedN i S is complete.

Proof. N i is the logic Gi with the additional rule

ϕ⇒ ψ ψ ` ϑ
DSR

ϕ⇒ ϑ
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DedN i S is complete.

Theorem. DedN i S is complete.

Proof. N i is the logic Gi with the additional rule

ϕ⇒ ψ ψ ` ϑ
DSR

ϕ⇒ ϑ

By the previous argument, we see that DedN i S is
pre-complete.
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DedN i S is complete.

Theorem. DedN i S is complete.

Proof. N i is the logic Gi with the additional rule

ϕ⇒ ψ ψ ` ϑ
DSR

ϕ⇒ ϑ

By the previous argument, we see that DedN i S is
pre-complete. Clearly, it is also upward-closed and
hence complete.
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Outline
I. A coequational language

II. A coequational calculus

III. DedG S is pre-complete

IV. DedN S is complete

V. An implicational language

VI. An implicational calculus

VII. DedGi S is pre-complete

VIII. DedN i S is complete
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III. DedG S is pre-complete

IV. DedN S is complete

V. An implicational language

VI. An implicational calculus

VII. DedGi S is pre-complete

VIII. DedN i S is complete
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Some open questions
• What can we do to the damned semantic rules to make

them more plausible as logical rules?

• Completeness proofs for related operators, including
HΣ+.

• An example of reasoning with one of these logics – is
that even plausible?
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