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A brief refresher

et C satisfy the following conditions.
C has all coproducts.
C has a factorization system (H, S).
C 1s S-well-powered
C has enough S-injectives.

Let I':C—C preserve S-morphisms and suppose, further,
that U :Cr—C has a right adjoint 4.
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A brief refresher

et C satisfy the following conditions.
C has all coproducts.
C has a factorization system (H, S).
C 1s S-well-powered
C has enough S-injectives.

Let I':C—C preserve S-morphisms and suppose, further,

that U :Cr—C has a right adjoint H. Then, we know that

Cr satisfies the above conditions as well. Furthermore, U
creates the factorization system in Cr and Cr has enough
cofree S-injectives.
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A brief refresher

A coequation over C'Is an (iIsomorphism class of)
S-morphism(s), P ~UHC'.
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A brief refresher

A coequation over C'Is an (iIsomorphism class of)
S-morphism(s), P ~UHC'.

A coalgebra (A, «) satisfies P iff for every

p: (A, a)—HC,Im(p) < HC.

A UHC

2l

P

A Step Towards Deductive Completeness — p.3/23



A brief refresher

A coalgebra (A, «) satisfies P iff for every
p: (A, a)—HC,Im(p) < HC.

A-"SUHC

Hereafter, we further assume that C has all meets of
S-morphisms.
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A brief refresher

A coalgebra (A, «) satisfies P iff for every
p: (A, a)—HC,Im(p) < HC.

A-"SUHC

Hereafter, we further assume that C has all meets of
S-morphisms.

We denote the isomorphism classes of S-morphisms
P—C in C by Sub(C') — however, this notation is merely
suggestive.
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A coequational language

Fix a S-Injective C' € C. We define a simple language
Lcoeq (Properly, £¢...).

For every P in Sub(U HC"), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq.
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A coequational language

Fix a S-Injective C' € C. We define a simple language

Lcoeq (Properly, £¢...).

For every P in Sub(U HC"), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq-

If © € Loeq, then

VRS £Coeq-

If {©;}ier C Lcoeq, then /\1 @i € LCoeq:
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Fix a S-Injective C' € C. We define a simple language
Lcoeq (Properly, £¢...).

For every P in Sub(U HC"), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq-

If © € Lcoeq, then O € Lcoeq

If {©;}ier C Lcoeq, then /\1 @i € LCoeq:
If o € Lcoeg and h: HC—HC', then p(h(z)) € Lcoeq.
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A coequational language
Fix a S-Injective C' € C. We define a simple language
Lcoeq (Properly, £¢...).

For every P in Sub(U HC"), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq-

If © € Lcoeq, then O € Lcoeq
If {©;}ier C Lcoeq, then /\1 @i € LCoeq:
If 0 € Lcoeqg and h: HC—HC', then o(h(z)) € Lcoeq.

If o € Lcoeqand h: HC—HC, then
Jy(e(y) Ah(y) = x) 1S 1IN Lcoeq.
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A coequational language

e Forevery P inSub(UHC'), we introduce an atomic proposition
P in £Coeq’ l.e., SUb(UHC) C ,Ccoeq.

If © € Lcoeq, then O¢ € Lcoeq-

If {@i}ie[ g »CCoeq1 then /\I Y; € £Coeq-

If o € Lcoegand h: HC— HC', then p(h(x)) € Lcoeq:

If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-
We define an interpretation [—]: Lcoeq—> Sub(UHC)):

[P] = P
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
Pin ECoeq1 1.e., SUb(UHC) C ,Ccoeq.

o If v € Lioeq: then Op € Lcoeq-
If {902'}736[ g »CCoeqv then /\I Y; € £Coeq-
If o € Lcoegand h: HC— HC', then p(h(x)) € Lcoeq:
If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-

We define an interpretation [—]: Lcoeq—> Sub(UHC)):

[Op] = Of¢]
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
Pin ECoeq1 1.e., SUb(UHC) C ,Ccoeq.

|f NS £Coeq1 then Ly € £Coeq-
o If {@i}ie[ g £Coeq, then /\I Y; € »CCoeq-
If o € Lcoegand h: HC— HC', then p(h(x)) € Lcoeq:
If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-

We define an interpretation [—]: Lcoeq—> Sub(UHC)):

/\ 907/]] - /\ [[907,
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
P in ECoeq1 l.e., SUb(UHC) C ,Ccoeq.

|f NS £Coeq1 then Ly € »CCoeq-
If {902'}736[ g »CCoeq1 then /\I Y; € £Coeq-
o Ifpe Leoegand h: HC—HC', then p(h(x)) € Lcoeq-
If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-

We define an interpretation [—]: Lcoeq—> Sub(UHC)):

[o(h(2))] = h*[¢]
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
P in ECoeq1 l.e., SUb(UHC) C ,Ccoeq.

|f NS £Coeq1 then Ly € »CCoeq-
If {902'}736[ g »CCoeq1 then /\I Y; € £Coeq-
If o € Lcoegand h: HC— HC', then p(h(x)) € Lcoeq:
o Ifp € Leoegand h: HC—HC', then Jy(p(y) A h(y) = z)isin

ECoeq .

We define an interpretation [—]: Lcoeq—> Sub(UHC)):

[By(e(y) A h(y) = z)] = 3rnle]

A Step Towards Deductive Completeness — p.4/23



Outline

.

1.
[1.
V.
V.
VI.
VII.
VIII.

A coequational language

A coequational calculus

Ded S' IS pre-complete

Dedy S Is complete
An implicational language
An implicational calculus

Ded: S IS pre-complete

Ded i S IS complete

A Step Towards Deductive Completeness — p.5/23



Outline

1.
[1.
V.

VI.
VII.
VIII.

A coequational calculus

Ded S' IS pre-complete

Dedy S Is complete
An implicational language
An implicational calculus

Ded: S IS pre-complete

Ded i S IS complete

A Step Towards Deductive Completeness — p.5/23



Satisfaction

We say that a coalgebra (A, «) satisfies a formula
0 € Lcoeq (Written (A, a) = ¢) justin case (A, o) = [¢]
In the sense of our previous talk.
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Satisfaction

We say that a coalgebra (A, «) satisfies a formula

0 € Lcoeq (Written (A, a) = ¢) justin case (A, o) = [¢]
In the sense of our previous talk.
Thatis, (A, a) = ¢ just in case every homomorphism

(A, ay— HC factors through the inclusion [¢] —~HC'.

A" UHC

[]
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Satisfaction

Thatis, (A, a) = ¢ just in case every homomorphism
(A, ay— HC factors through the inclusion [¢] ~HC'.

A-"SUHC

[]

Foraset S C Lcoeq, We say that (A, a) = S just in case
(A, a) =@ foreach p € S.
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Satisfaction

Thatis, (A, a) = ¢ just in case every homomorphism
(A, ay— HC factors through the inclusion [¢] ~HC'.

A-"SUHC

[]

Foraset S C Lcoeq, We say that (A, a) = S just in case
(A, a) =@ foreach p € S.

We say that a collection V' C Cr satisfies S'if each (A, a) €
V satisfies S.
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(Pre-)complete sets of formulas

Recall our definition of generating coeguation for a
collection of coalgebras V.
Gen V satisfies the following fixed point description.

V = Gen V;

IfV

— P’ then GenV - P.
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(Pre-)complete sets of formulas

Recall our definition of generating coeguation for a
collection of coalgebras V.

Gen V satisfies the following fixed point description.
V = Gen V;
IfV = P’ then GenV I+ P’.

Call aset S C Lcoeq Of coequations over C' pre-complete If
there isa ¢ € S such that ] = Gen Mod(S).

Call .S complete if, for every ¢ such that Mod(S) & ¢, we
have © € S.
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(Pre-)complete sets of formulas

Call aset S C Lcoeq Of coequations over C' pre-complete If
there isa ¢ € S such that o] = Gen Mod(.5).

Call .S complete if, for every ¢ such that Mod(S) = ¢, we
have p € S.

We write o = 4 just in case [¢] F [«], that is, just in case

there is a morphism ] —{+] making the diagram below

commute.
[o]-[v]

L/
UHC
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(Pre-)complete sets of formulas

Call aset S C Lcoeq Of coequations over C' pre-complete If

there isa ¢ € S such that o] = Gen Mod(.5).
Call .S complete if, for every ¢ such that Mod(S) = ¢, we

have p € S.
A pre-complete set S Is complete just in case it Is
upward-closed, in the sense that if ¢ - v and € S, then

Y € S.
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A sound rule

: 1 .- Pn. .
An inference rule L " = is sound just in case,

whenever (A, o) &= o1, ..., (A, @) = ¢,, then
(A4, a) = 9.
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A sound rule

An inference rule L " o IS sound just In case,

whenever (A, a) = @1, ..., (A, a) = ¢, then
(A4, @) = 9.
More generally, an (infinitary) inference rule {Spiiel IS

sound just in case, whenever (A, «) = ¢, forevery: € I,
then (A, o) = 1.
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A sound rule

More generally, an (infinitary) inference rule {Spiie[ IS

sound just in case, whenever (A, o) = o, forevery i € I,
then (A, o) = 9.

Theorem. The rule M /\ _E is sound.
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A sound rule

Theorem. /\ -E 1s sound.
Proof. Suppose (A, a) = /\ @; and p: (A, a)—HC'. We must
show that Im(p) < [¢;].

=

A—SUHC

[4]
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A sound rule

Theorem. /\ -FE 15 sound.

Proof. Suppose (A, a) = /\ @; and p: (A, a)—HC'. We must

show that Im(p) < [¢:]-
=

p

A

»UHC

A

[ /\ pi] —— [pi]
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A sound rule

Theorem. /\ -FE 15 sound.

Proof. Suppose (A, a) /\ @; and p: (A, a)—HC'. We must

show that Im(p) < [¢;]. But we know Im(p) < [[/\ wi] < [ei]-
[]

p

»UHC

A

(Aol — [l

A
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A sound rule
Theorem. /\ -F 1s sound.

Proof. Suppose (A, a) = /\gpi and p: (A, a)—HC'. We must

show that Im(p) < [¢;]. But we know Im(p) < [[/\ wi] < [ei]-
[]

This 1s a sound rule, but it’s quite useless for our purposes.
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A coequational calculus

The following rules are sound.
104 }ier /\
-]
/\ s

If Im(p: (A, a) >HC') < ;] foreach ¢ € I, then Im(p) <

/\ [eil.
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A coequational calculus

The following rules are sound.

If Im(p: (A, a)—~HC) < [¢], then Im(p) < O[] (be-
cause Im(p) is a subcoalgebra contained in o).
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A coequational calculus

The following rules are sound.

{sz}iel -| i .

N Ca
2

()

Here, Subst applies for every I'-homomorphism
h-HC—HC.
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A coequational calculus

The following rules are sound.

{sz}iel N i .
N LA
¥
SOh(2) Subst

Let p: HC'—HC' be given.

Im(p) < h*[] iff 3, Im(p) <[]
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A coequational calculus

The following rules are sound.

{907/}7561 N i .
N LA
¥
SOh(2) Subst

Let p: HC'—HC' be given.

Im(p) < h*[[p] iff Im(h o p) < o]
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A coequational calculus

The following rules are sound.

{sz}iel N i .
N LA
¥
SOh(2) Subst

Let p: HC'—HC' be given.
Im(p) < h*[[p] iff Im(h o p) < o]

Hence, if for every q: HC—HC, Im(q) < [¢], then
Im(p) < A*[e].
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A coequational calculus

The following rules are sound.

{sz}iel N i .
N LA
¥
SOh(2) Subst

Let’s call this logic G (for pretty good logic).
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A coequational calculus

The following rules are sound.

{sz}iel 90
-l R
/\907; /\ Ly -
© © =Y
Subst
oh(z) o D°R

This is clearly a sound rule — if every map (A, a)—HC
factors through [¢] and [¢] < [v] then every such mor-
phism also factors through [].
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A coequational calculus

The following rules are sound.

{sz}iel 90
-l R
/\907; /\ Ly -
© © =Y
Subst
oh(z) o Do

However, it’s not a rule we would generally like in our so-
called logic, as it depends on the semantics of ¢ and .
Hence, we call it DSR for Damned Semantic Rule.
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A coequational calculus

The following rules are sound.

{itier ©
1l R
/\%‘ /\ Ly -
© @ oY
Subst
o(h(z)) - o DR

We call the logic G 4+ DSR a not-so-good logic, V.
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A lemma

Lemma.

[l = N\{r*[¢] | h:HC—HC}.

In other terms,

[¢] = [ A\{o(h(x)) | h:HC——HCY].
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A lemma

Lemma.

[l = N\{r*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—HC',

3 \{P*[¢] | h:HC—HC} < [¢].

=
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A lemma

Lemma.

[l = N\{r*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—HC',

AL el | h:HC—HC} < k*[¢].
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A lemma

Lemma.

[e] = N{r'[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—HC',

AP [e] | h: HO——HC} < k*[¢].
C: It suffices to show that for all k: HC—HC',

Afe] <k [e].
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A lemma

Lemma.
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Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—HC',
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A lemma

Lemma.

[e] = N{r'[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—HC',

AP [e] | h: HO——HC} < k*[¢].
C: It suffices to show that for all k: HC—HC',

3 a2 [¢] < ]

But, B[] is invariant, so 3 1 [¢] < @fe] < .
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(G 1S pre-complete

Let Ded(S) denote the deductive closure of S under the
logic G. We claim that for every S, Dedq(S) IS pre-
complete.
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(G 1S pre-complete

Let Ded(.S) denote the deductive closure of .S under the
logic G. We claim that for every .S, Dedg(.5) is
pre-complete.

Theorem. Let S C Lcoeq- Then Dedg(S) is pre-complete.
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(G 1S pre-complete
Theorem. Let S C Lcoeq- Then Dedg(S) is pre-complete.

Proof. Let ¢ = /\S.
S
@ -1

=
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(G 1S pre-complete
Theorem. Let S C Lcoeq- Then Dedg(S) is pre-complete.

Proof. Let ¢ = /\ S.

S
AN

(@) | b HO—HCy >

=
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(G 1S pre-complete
Theorem. Let S C Lcoeq- Then Dedg(S) is pre-complete.

Proof. Let ¢ = /\ S.

S
AN
(W) | h-HOHHc} A
A{(h(z)) | h:HC——HC'}

=
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(G 1S pre-complete

Theorem. Let S C Lcoeq- Then Dedg(S) is pre-complete.

Proof. Let ¢ = /\ S.

S
AN

Subst

{4(h(z)) | - HC——HC} A
[\ {2 (@) | h-HOHHC} o
0 A\ {¢(h(z)) | h:HC——HC'}

=
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(G 1S pre-complete
Theorem. Let S C Lcoeq-

Proof. So, we see that S+ O /\{w
by the |

1e1mina

[0 A{w(h(

)

Then Dedq(S) is pre-complete.

2)) | h: HC—HC'}. Now,

) | h-HC——HC}] =0 . [¢¥],

and by the Invariance Theorem, O &2 [¢] < [¢].
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~ p.12/23



Dedy S Is complete.

Theorem. Let S C Lcoeq and let Dedy(.S) denote the

deductive closure of S with respect to N. Then
Dedy (S) is complete.
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Dedy S Is complete.

Theorem. Let S C Lcoeq and let Dedy(S) denote the

deductive closure of S with respect to N. Then
Dedy (S) is complete.

Proof. Recall that N is G 4+ DSR, where DSR is the

rule
p Y
(0
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Dedy S Is complete.

Theorem. Let S C Lcoeq and let Dedy(S) denote the

deductive closure of S with respect to N. Then
Dedy (S) is complete.

Proof. Recall that N is G 4+ DSR, where DSR is the

rule
p Y
(0

Hence, Dedy(S) is the upward closure of Dedg(.5),

which is pre-complete.
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An implicational language

Define Limp = {0 = ¥ | ¢, % € Lcoeq}
Say that (A, o) = © = 1 just in case, for every

p: (A, a)—HC such that Im(p) < [¢], also Im(p) < [¢].
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An implicational language

Define £Imp — {90 — ¢ | %lb - £Coeq}-
Say that (A, a) = ¢ = 9 just in case, for every
p: (A, a)—HC such that Im(p) < [¢], also Im(p) < [¢].

A—SUHC A——UHC

\ I = \ I
[]
Reminder: This is not the same as (( A, a) 7£ o Or
(A, a) = ). That would be true if either there is some p

such that Im(p) £ [¢] or for all p, Im(p) < [¥].
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An implicational language

Define £Imp — {90 — %b | %lb - £Coeq}-
Say that (A, o) = © = 1 just in case, for every
p: (A, a)—HC such that Im(p) < [¢], also Im(p) < [¢].

A—SUHC A——UHC

\I - N
[v]

This is also not the same as (A, a) = —p V ¢ (if
Sub(UHC) is a Heyting algebra).
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An implicational language

Define Limp = {0 = ¥ | ¢, % € Lcoeq}
Say that (A, o) = © = 1 just in case, for every

p: (A, a)—HC such that Im(p) < [¢], also Im(p) < [¢].
A—>UHC A—>UHC

\I;»\I

Note:
(A, a)

= ¢ iff (A, a)

where T = (HC=HC).
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Outline

V1. An implicational calculus
VIl. Dedg: S Is pre-complete
VIIl. Dedy: S 1s complete
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An implicational calculus

The following rules are sound.

p = /\%‘ /\-E

Y = YP;
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An implicational calculus

The following rules are sound.

p = /\%‘ /\-E

Y = YP;

{© = Vi }ier K
P = /\%‘ /\
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An implicational calculus

The following rules are sound.

p = /\%‘ /\-E

Y = YP;

{© = Vi }ier K
P = /\%‘ /\

-1

p = Uy
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An implicational calculus

The following rules are sound.

p = /\%‘ /\-E

Y = YP;

-1

p = Uy

{© = Vi }ier /\ y

Y = /\%‘

(Fa(p(z) Ah(z) =y)) = P

p = Y(h(z))

Subst
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An implicational calculus

The following rules are sound.

p = /\%‘ /\-E

Y = YP;

-1

p = Uy

O = P Y = U
o = U

Cut

{© = Vi }ier /\ y

Y = /\ Vi
Bele(e) Ab@) =p) =¥
p = P(h(z))
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An implicational calculus

The following rules are sound.

p = /\% /\-E

Y = YP;

-1

p = Uy

O = P Y = U
o = U

Cut

{© = Vi }ier /\ y

Y = /\ Vi
Gelp(e) A =) =
p = P(h(z))

Let’s call this logic G*, again because it seems a reasonably

good logic.
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An implicational calculus

The following rules are sound.

p = /\%‘ /\-E

{© = Vi }ier /\ y

p = Y; 2= /\%‘
_y (Fz(p(x) ANh(z) =y)) = ¢ -
p = Oy w = Y(h(z))
O = P ¢:>19Cut O = Y wkﬁDSR
o = U o = U

It’s that damned semantic rule again. Let’s call this N* for
not so good implicational logic.
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A couple of handy operators

We say that a coequation ¢ IS S -minimal just In case,
whenever S = ¢ = 1), then ¢ - 1.
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A couple of handy operators

We say that a coequation ¢ IS S -minimal just In case,
whenever S = ¢ = 1), then ¢ - 1.
Given S C Ly, define two operators

Sub(UHC)— Sub(UHC'):

Consg Y = /\{w o=y e S}
entg(p) = \/{w < |1y € S-minimal}
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A couple of handy operators

We say that a coequation ¢ IS S -minimal just In case,
whenever S = ¢ = 1), then ¢ - 1.
Given S C Ly, define two operators

Sub(UHC)— Sub(UHC'):

Consg Y = /\{w o=y e S}
entg(p) = \/{w < |1y € S-minimal}

consg ¢ IS the meet of the consequents of ¢ In S.
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A couple of handy operators

consg ¢ = /\{zp o=y e S}
entg(p) = \/{w < |1y € S-minimal}

Lemma. entg(y) is S-minimal, and hence is the
greatest S -minimal subobject below .
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A couple of handy operators

Consg Y = /\{zp | o =Y € S}
entg(p) = \/{w < |1y € S-minimal}

Lemma.

entsp = A\{y | Mod(S)
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A couple of handy operators

consg ¢ = /\{¢ o=y e S}
entg(p) = \/{w < |1y € S-minimal}

Lemma.

ents = A\f{v | Mod(S) |= o = 1)

So, S Is pre-complete iff for every ¢, we have ¢ =
entgp € S. Our goal Is to show that Ded.: S contains

@ = entg .
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Definition of EIEIO

Call an operator [© : Limp—Limp an

endomorphism-invariant interior operator (EIEIO) just
In case It satisfies the following axioms.

S/IC

Ll -0 @
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Definition of EIEIO

Call an operator [© : Limp—Limp an

endomorphism-invariant interior operator (EIEIO) just
In case It satisfies the following axioms.

S/C 2
Cle-OB[ g Bl F Bl

Monotone
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Definition of EIEIO

Call an operator [© : Limp—Limp an

endomorphism-invariant interior operator (EIEIO) just
In case It satisfies the following axioms.

S/C 2
Cle-OB[ g Bl F Bl

Monotone

Deflationary
Blp = ¢
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Definition of EIEIO

Call an operator [© : Limp—Limp an

endomorphism-invariant interior operator (EIEIO) just
In case It satisfies the following axioms.

S/C 2
Cle-OB[ g Bl F Bl

Monotone

Deflationar ldempotent
G0 - ¢ Y Gormme P
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Definition of EIEIO

Call an operator [© : Limp—Limp an

endomorphism-invariant interior operator (EIEIO) just
In case It satisfies the following axioms.

|_
S/IC Py Monotone
e OB Bl F Bl
Deflationar l[dempotent
G0 - ¢ Y Gormme P
h-HCO——H(C

52(B0(@) A (@) = y) F 8Ge(e(@) ARE@) = 7))
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Definition of EIEIO

|_
S/IC pEY Monotone
e OB Bl F Bl
Deflationary ldempotent
Ll = Ll - @B
h-HO——HC

FEI

dz(Ble(z) A h(z) = y) F B(E3z(e(z) A h(z) =y))
In other words, an operator [ iIs EIEIO just In case

o] IS a comonad (deflationary, idempotent, monotone);

o] IS fully endomorphism invariant — for all
h:HC—HCC,

Jz(RIp(z) A h(z) = y) F B(3z(e(z) A h(z) = y)).
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Dedi S IS pre-complete.

Lemma. entg is the greatest EIEIO suboperator of

O

O

oconsg. That is, entg < [0 o consg and for every
:Sub(UHC')— Sub(UHC') in EIEIO such that

<

o consg, also

O

< entg.

A Step Towards Deductive Completeness — p.20/23



Dedi S IS pre-complete.

Lemma. entg is the greatest EIEIO suboperator of

O

O

oconsg. That is, entg < [ o consg and for every
:Sub(UHC')— Sub(UHC') in EIEIO such that

<

o consg, also

O

< entg.

Lemma. If S s deductively closed, then consg is an
EIEIO. In other words, CONSped,, § 1S AN EIEIO.
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Dedi S IS pre-complete.

Lemma. If S is deductively closed, then consg s an
EIEIO. In other words, CONSpPed,; § 1S AN EIEIO.

Corollary. CONSped, § = €ntg.
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Dedi S IS pre-complete.

Corollary. conspeg , s = entg.

Proof. CONSped ,; § 18 an EIEIO and a suboperator of
O CONSg. =
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Dedi S IS pre-complete.

Corollary. conspeg , s = entg.

Proof. CONSped ,; § 18 an EIEIO and a suboperator of
o consg. Hence, CONSped , s < entg. S>>
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Dedi S IS pre-complete.

Corollary. conspeq_, s = entg.

Proof. conspeq ,; s 1s an EIEIO and a suboperator of
o consg. Hence, conspey , 5 < entg. The other

inclusion follows from the fact that G* is sound.
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Dedi S IS pre-complete.

Theorem. Dedq: S s pre-complete.
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Dedi S IS pre-complete.

Theorem. Dedq: S s pre-complete.

Proof. 1t suffices to show that Dedg: S contains
@ = entg ¢ for each ¢ € Lpeq- >
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Dedi S IS pre-complete.

Theorem. Dedq: S s pre-complete.

Proof. 1t suffices to show that Dedg: S contains
¢ = entg ¢ for each ¢ € Lcoeq- Thus, it suffices to

show that Dedg: S contains each ¢ = conspeq ,; s ¢
=
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Dedi S IS pre-complete.

Theorem. Dedq: S s pre-complete.

Proof. It suffices to show that Dedq: .S contains
¢ = entg ¢ for each ¢ € Lcoeq- Thus, it suffices to

show that Dedq: S contains each ¢ = CONSDPed; S -
This is clear, since

CONSDPed ,; § P = /\{w | o = ¢ € Dedi S}

{90:>¢z el /\I
o= N\

and Dedg: S is closed under the rule
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Ded i S IS complete.

Theorem. Dedy: S s complete.
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Ded i S IS complete.

Theorem. Dedy: S s complete.

Proof. N'is the logic G* with the additional rule

p=y  YrUoan
© = U

=
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Ded i S IS complete.

Theorem. Dedy: S s complete.
Proof. N'is the logic G* with the additional rule

p=y  YrUoan
© = U

By the previous argument, we see that Dedy: S is
pre-complete. =>>
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Ded i S IS complete.

Theorem. Dedy: S s complete.
Proof. N'is the logic G* with the additional rule

p=y  YrUoan
© = U

By the previous argument, we see that Dedy: S is
pre-complete. Clearly, it is also upward-closed and

hence complete.
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Outline

V1. An implicational calculus
VIl. Dedg: S Is pre-complete
VIIl. Dedy: S 1s complete
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V. /An implicational language

V1. /An implicational calculus
VII. Deds: S Is pre-complete
VIII. Dedy: S Is complete
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Some open questions

What can we do to the damned semantic rules to make
them more plausible as logical rules?
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Some open questions

What can we do to the damned semantic rules to make
them more plausible as logical rules?

Completeness proofs for related operators, including
HYT
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Some open questions

What can we do to the damned semantic rules to make
them more plausible as logical rules?

Completeness proofs for related operators, including
HYT

An example of reasoning with one of these logics — Is
that even plausible?

A Step Towards Deductive Completeness — p.23/23
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