A Step Towards Deductive Completeness

Jesse Hughes
jesseh@cs.kun.nl

University of Nijmegen

Outline

I. A coequational language

Outline

I. A coequational language
II. A coequational calculus

Outline

I. A coequational language
II. A coequational calculus
III. Ded ${ }_{G} S$ is pre-complete

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language
VI. An implicational calculus

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. Ded ${ }_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

A brief refresher

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.

A brief refresher

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$.

A brief refresher

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$.
- \mathcal{C} is \mathcal{S}-well-powered

A brief refresher

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$.
- \mathcal{C} is \mathcal{S}-well-powered
- \mathcal{C} has enough \mathcal{S}-injectives.

A brief refresher

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$.
- \mathcal{C} is \mathcal{S}-well-powered
- \mathcal{C} has enough \mathcal{S}-injectives.

Let $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$ preserve \mathcal{S}-morphisms and suppose, further, that $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H.

A brief refresher

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$.
- \mathcal{C} is \mathcal{S}-well-powered
- \mathcal{C} has enough \mathcal{S}-injectives.

Let $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$ preserve \mathcal{S}-morphisms and suppose, further, that $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H. Then, we know that \mathcal{C}_{Γ} satisfies the above conditions as well. Furthermore, U creates the factorization system in \mathcal{C}_{Γ} and \mathcal{C}_{Γ} has enough cofree \mathcal{S}-injectives.

A brief refresher

A coequation over C is an (isomorphism class of) \mathcal{S}-morphism(s), $P \mapsto U H C$.

A brief refresher

A coequation over C is an (isomorphism class of) \mathcal{S}-morphism(s), $P \hookrightarrow U H C$.
A coalgebra $\langle A, \alpha\rangle$ satisfies P iff for every $p:\langle A, \alpha\rangle \rightarrow H C, \operatorname{Im}(p) \leq H C$.

A brief refresher

A coalgebra $\langle A, \alpha\rangle$ satisfies P iff for every $p:\langle A, \alpha\rangle \rightarrow H C, \operatorname{lm}(p) \leq H C$.

$$
\underset{-}{A \xrightarrow{\forall p}} \underset{\substack{\forall p}}{H C}
$$

Hereafter, we further assume that \mathcal{C} has all meets of \mathcal{S}-morphisms.

A brief refresher

A coalgebra $\langle A, \alpha\rangle$ satisfies P iff for every $p:\langle A, \alpha\rangle \rightarrow H C, \operatorname{Im}(p) \leq H C$.

$$
\begin{aligned}
& A \xrightarrow{\forall p} U H C \\
& \begin{array}{r}
1 \\
P
\end{array}
\end{aligned}
$$

Hereafter, we further assume that \mathcal{C} has all meets of \mathcal{S}-morphisms.
We denote the isomorphism classes of \mathcal{S}-morphisms $P \rightarrow C$ in \mathcal{C} by $\operatorname{Sub}(C)$ - however, this notation is merely suggestive.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then
$\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket P \rrbracket=P
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \square \varphi \rrbracket=\square \llbracket \varphi \rrbracket
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \bigwedge \varphi_{i} \rrbracket=\bigwedge \llbracket \varphi_{i} \rrbracket
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \varphi(h(x)) \rrbracket=h^{*} \llbracket \varphi \rrbracket
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq. }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \exists y(\varphi(y) \wedge h(y)=x) \rrbracket=\exists_{h} \llbracket \varphi \rrbracket
$$

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. Ded ${ }_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. $\operatorname{Ded}_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

Satisfaction

We say that a coalgebra $\langle A, \alpha\rangle$ satisfies a formula $\varphi \in \mathcal{L}_{\text {Coeq }}$ (written $\langle A, \alpha\rangle \models \varphi$) just in case $\langle A, \alpha\rangle \models \llbracket \varphi \rrbracket$ in the sense of our previous talk.

Satisfaction

We say that a coalgebra $\langle A, \alpha\rangle$ satisfies a formula $\varphi \in \mathcal{L}_{\text {Coeq }}$ (written $\langle A, \alpha\rangle \models \varphi$) just in case $\langle A, \alpha\rangle \models \llbracket \varphi \rrbracket$ in the sense of our previous talk.
That is, $\langle A, \alpha\rangle \models \varphi$ just in case every homomorphism $\langle A, \alpha\rangle \rightarrow H C$ factors through the inclusion $\llbracket \varphi \rrbracket \nrightarrow H C$.

$$
\begin{aligned}
& A \xrightarrow{\forall p} U H C \\
& \exists \begin{array}{|c}
\square \\
\llbracket \varphi \rrbracket
\end{array}
\end{aligned}
$$

Satisfaction

That is, $\langle A, \alpha\rangle \models \varphi$ just in case every homomorphism $\langle A, \alpha\rangle \rightarrow H C$ factors through the inclusion $\llbracket \varphi \rrbracket \rightharpoondown H C$.

$$
\begin{aligned}
& A \xrightarrow{\forall p} U H C \\
& \exists \begin{array}{l}
\rightrightarrows \\
\llbracket \varphi \rrbracket
\end{array}
\end{aligned}
$$

For a set $S \subseteq \mathcal{L}_{\text {coeq }}$, we say that $\langle A, \alpha\rangle \models S$ just in case $\langle A, \alpha\rangle \models \varphi$ for each $\varphi \in S$.

Satisfaction

That is, $\langle A, \alpha\rangle \models \varphi$ just in case every homomorphism $\langle A, \alpha\rangle \rightarrow H C$ factors through the inclusion $\llbracket \varphi \rrbracket \rightharpoondown H C$.

$$
\begin{aligned}
& A \xrightarrow{\forall p} U H C \\
& \exists \begin{array}{l}
\square \\
\llbracket \varphi \rrbracket
\end{array}
\end{aligned}
$$

For a set $S \subseteq \mathcal{L}_{\text {coeq }}$, we say that $\langle A, \alpha\rangle \models S$ just in case $\langle A, \alpha\rangle \models \varphi$ for each $\varphi \in S$.
We say that a collection $\mathbf{V} \subseteq \mathcal{C}_{\Gamma}$ satisfies S if each $\langle A, \alpha\rangle \in$ V satisfies S.

(Pre-)complete sets of formulas

Recall our definition of generating coequation for a collection of coalgebras \mathbf{V}.
Gen \mathbf{V} satisfies the following fixed point description.

- $\mathbf{V} \models$ Gen \mathbf{V};
- If $\mathbf{V} \models P^{\prime}$, then Gen $\mathbf{V} \vdash P^{\prime}$.

(Pre-)complete sets of formulas

Recall our definition of generating coequation for a collection of coalgebras \mathbf{V}.
Gen \mathbf{V} satisfies the following fixed point description.

- $\mathbf{V} \models$ Gen \mathbf{V};
- If $\mathbf{V} \models P^{\prime}$, then Gen $\mathbf{V} \vdash P^{\prime}$.

Call a set $S \subseteq \mathcal{L}_{\text {Coeq }}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket=\operatorname{Gen} \operatorname{Mod}(S)$.

(Pre-)complete sets of formulas

Recall our definition of generating coequation for a collection of coalgebras \mathbf{V}.
Gen \mathbf{V} satisfies the following fixed point description.

- $\mathbf{V} \models$ Gen \mathbf{V};
- If $\mathbf{V} \models P^{\prime}$, then Gen $\mathbf{V} \vdash P^{\prime}$.

Call a set $S \subseteq \mathcal{L}_{\text {Coeq }}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket=\operatorname{Gen} \operatorname{Mod}(S)$.
Call S complete if, for every φ such that $\operatorname{Mod}(S) \models \varphi$, we have $\varphi \in S$.

(Pre-)complete sets of formulas

Call a set $S \subseteq \mathcal{L}_{\text {Coeq }}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket=G e n \operatorname{Mod}(S)$.
Call S complete if, for every φ such that $\operatorname{Mod}(S) \models \varphi$, we have $\varphi \in S$.
We write $\varphi \vdash \psi$ just in case $\llbracket \varphi \rrbracket \vdash \llbracket \psi \rrbracket$, that is, just in case there is a morphism $\llbracket \varphi \rrbracket \rightarrow \llbracket \psi \rrbracket$ making the diagram below commute.

$$
\begin{gathered}
\llbracket \varphi \rrbracket \llbracket \llbracket \downarrow \rrbracket \\
U H C
\end{gathered}
$$

(Pre-)complete sets of formulas

Call a set $S \subseteq \mathcal{L}_{\text {Coeq }}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket=G e n \operatorname{Mod}(S)$. Call S complete if, for every φ such that $\operatorname{Mod}(S) \models \varphi$, we have $\varphi \in S$.
A pre-complete set S is complete just in case it is upward-closed, in the sense that if $\varphi \vdash \psi$ and $\varphi \in S$, then $\psi \in S$.

A sound rule

An inference rule $\frac{\varphi_{1} \ldots \varphi_{n}}{\psi}$ is sound just in case, whenever $\langle A, \alpha\rangle \models \varphi_{1}, \ldots,\langle A, \alpha\rangle \models \varphi_{n}$, then $\langle A, \alpha\rangle \models \psi$.

A sound rule

An inference rule $\frac{\varphi_{1} \ldots \varphi_{n}}{\psi}$ is sound just in case, whenever $\langle A, \alpha\rangle \models \varphi_{1}, \ldots,\langle A, \alpha\rangle \models \varphi_{n}$, then $\langle A, \alpha\rangle \models \psi$. More generally, an (infinitary) inference rule $\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\psi}$ is sound just in case, whenever $\langle A, \alpha\rangle \models \varphi_{i}$ for every $i \in I$, then $\langle A, \alpha\rangle \models \psi$.

A sound rule

More generally, an (infinitary) inference rule $\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\psi}$ is sound just in case, whenever $\langle A, \alpha\rangle \models \varphi_{i}$ for every $i \in I$, then $\langle A, \alpha\rangle \models \psi$.
Theorem. The rule $\bigwedge_{\varphi_{i}} \bigwedge-E$ is sound.

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$.

$$
\underset{\llbracket}{\substack{p \\ \llbracket \varphi_{i} \rrbracket}}
$$

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$.

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$. But we know $\operatorname{Im}(p) \leq \llbracket \bigwedge \varphi_{i} \rrbracket \leq \llbracket \varphi_{i} \rrbracket$.

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$. But we know $\operatorname{Im}(p) \leq \llbracket \bigwedge \varphi_{i} \rrbracket \leq \llbracket \varphi_{i} \rrbracket$.

This is a sound rule, but it's quite useless for our purposes.

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

If $\operatorname{Im}(p:\langle A, \alpha\rangle \rightarrow H C) \leq \llbracket \varphi_{i} \rrbracket$ for each $i \in I$, then $\operatorname{Im}(p) \leq$ $\backslash\left[\varphi_{i}\right]$.

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

$$
\frac{\varphi}{\square \varphi} \square-\mathrm{I}
$$

If $\operatorname{Im}(p:\langle A, \alpha\rangle \rightarrow H C) \leq \llbracket \varphi \rrbracket$, then $\operatorname{Im}(p) \leq \square \llbracket \varphi \rrbracket$ (because $\operatorname{Im}(p)$ is a subcoalgebra contained in φ).

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

$$
\frac{\varphi}{\varphi(h(x))} \text { Subst }
$$

Here, Subst applies for every Γ-homomorphism $h: H C \rightarrow H C$.

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

$$
\frac{\varphi}{\square \varphi} \square-\mathrm{I}
$$

$$
\frac{\varphi}{\varphi(h(x))} \text { Subst }
$$

Let $p: H C \rightarrow H C$ be given.

$$
\operatorname{Im}(p) \leq h^{*} \llbracket \varphi \rrbracket \text { iff } \exists_{h} \operatorname{Im}(p) \leq \llbracket \varphi \rrbracket .
$$

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

$$
\frac{\varphi}{\square \varphi} \square-I
$$

$\frac{\varphi}{\varphi(h(x))}$ Subst
Let $p: H C \rightarrow H C$ be given.

$$
\operatorname{Im}(p) \leq h^{*} \llbracket \varphi \rrbracket \text { iff } \operatorname{Im}(h \circ p) \leq \llbracket \varphi \rrbracket .
$$

A coequational calculus

The following rules are sound.

$$
\begin{aligned}
& \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge_{\varphi_{i}}} \bigwedge-\mathrm{I} \\
& \frac{\varphi}{\varphi(h(x))} \text { Subst }
\end{aligned}
$$

Let $p: H C \rightarrow H C$ be given.

$$
\operatorname{Im}(p) \leq h^{*} \llbracket \varphi \rrbracket \text { iff } \operatorname{Im}(h \circ p) \leq \llbracket \varphi \rrbracket .
$$

Hence, if for every $q: H C \rightarrow H C, \operatorname{Im}(q) \leq \llbracket \varphi \rrbracket$, then $\operatorname{lm}(p) \leq h^{*} \llbracket \varphi \rrbracket$.

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

$$
\frac{\varphi}{\square \varphi} \square-I
$$

$$
\frac{\varphi}{\varphi(h(x))} \text { Subst }
$$

Let's call this logic G (for pretty good logic).

A coequational calculus

The following rules are sound.

$$
\begin{aligned}
& \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge_{\varphi_{i}}} \bigwedge-\mathrm{I} \\
& \frac{\varphi}{\varphi(h(x))} \text { Subst }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\varphi}{\square \varphi} \square-\mathrm{I} \\
& \frac{\varphi}{\varphi} \quad \varphi \vdash \psi \\
& \psi \\
& \mathrm{DSR}
\end{aligned}
$$

This is clearly a sound rule - if every map $\langle A, \alpha\rangle \rightarrow H C$ factors through $\llbracket \varphi \rrbracket$ and $\llbracket \varphi \rrbracket \leq \llbracket \psi \rrbracket$ then every such morphism also factors through $\llbracket \psi \rrbracket$.

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge_{\varphi_{i}}} \bigwedge \text {-I } & \frac{\varphi}{\square \varphi} \square-\mathrm{I} \\
\frac{\varphi}{\varphi(h(x))} \text { Subst } & \frac{\varphi \quad \varphi \vdash \psi}{\psi} \mathrm{DSR}
\end{array}
$$

However, it's not a rule we would generally like in our socalled logic, as it depends on the semantics of φ and ψ. Hence, we call it DSR for Damned Semantic Rule.

A coequational calculus

The following rules are sound.

$$
\frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

$\frac{\varphi}{\varphi(h(x))}$ Subst

$$
\begin{aligned}
& \frac{\varphi}{\square \varphi} \square-\mathrm{I} \\
& \frac{\varphi \quad \varphi \vdash \psi}{\psi} \mathrm{DSR}
\end{aligned}
$$

We call the logic $G+$ DSR a not-so-good logic, N.

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. $\operatorname{Ded}_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. $\operatorname{Ded}_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

In other terms,

$$
\boxtimes \llbracket \varphi \rrbracket=\llbracket \bigwedge\{\varphi(h(x)) \mid h: H C \longrightarrow H C\} \rrbracket .
$$

A lemma

Lemma.

$$
\nabla \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
\supseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\exists_{k} \bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
\supseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq k^{*} \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
\supseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq k^{*} \llbracket \varphi \rrbracket .
$$

\subseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\nabla \llbracket \varphi \rrbracket \leq k^{*} \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
?: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq k^{*} \llbracket \varphi \rrbracket .
$$

\subseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\exists_{k} \boxtimes \llbracket \varphi \rrbracket \leq \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
?: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq k^{*} \llbracket \varphi \rrbracket .
$$

\subseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\exists_{k} \boxtimes \llbracket \varphi \rrbracket \leq \llbracket \varphi \rrbracket .
$$

But, $\boxtimes \llbracket \varphi \rrbracket$ is invariant, so $\exists_{k} \boxtimes \llbracket \varphi \rrbracket \leq \boxtimes \llbracket \varphi \rrbracket \leq \varphi$.

G is pre-complete

Let $\operatorname{Ded}_{G}(S)$ denote the deductive closure of S under the logic G. We claim that for every $S, \operatorname{Ded}_{G}(S)$ is precomplete.

G is pre-complete

Let $\operatorname{Ded}_{G}(S)$ denote the deductive closure of S under the logic G. We claim that for every $S, \operatorname{Ded}_{G}(S)$ is pre-complete.
Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Then $\operatorname{Ded}_{G}(S)$ is pre-complete.

G is pre-complete

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Then $\operatorname{Ded}_{G}(S)$ is pre-complete.
Proof. Let $\psi=\bigwedge S$.

$$
\frac{S}{\psi} \bigwedge-\mathrm{I}
$$

G is pre-complete

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Then $\operatorname{Ded}_{G}(S)$ is pre-complete.
Proof. Let $\psi=\bigwedge S$.

$$
\frac{\frac{S}{\psi} \bigwedge-\mathrm{I}}{\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \text { Subst }
$$

G is pre-complete

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Then $\operatorname{Ded}_{G}(S)$ is pre-complete.
Proof. Let $\psi=\bigwedge S$.

$$
\frac{\frac{S}{\psi} \bigwedge-\mathrm{I}}{\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \text { Subst } \bigwedge_{\bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\}}^{\text {-I }}
$$

G is pre-complete

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Then $\operatorname{Ded}_{G}(S)$ is pre-complete.
Proof. Let $\psi=\bigwedge S$.

$$
\frac{\frac{\frac{S}{\psi} \bigwedge-\mathrm{I}}{\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \text { Subst }}{\bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \bigwedge-\mathrm{I}
$$

G is pre-complete

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Then $\operatorname{Ded}_{G}(S)$ is pre-complete.
Proof. So, we see that $S \vdash \square \bigwedge\{\psi(h(x)) \mid h: H C \rightarrow H C\}$. Now, by the lemma,

$$
\llbracket \square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\} \rrbracket=\square \boxtimes \llbracket \psi \rrbracket,
$$

and by the Invariance Theorem, $\square \square \llbracket \psi \rrbracket \leq \llbracket \varphi \rrbracket$.

$\operatorname{Ded}_{N} S$ is complete.

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$ and let $\operatorname{Ded}_{N}(S)$ denote the deductive closure of S with respect to N. Then $\operatorname{Ded}_{N}(S)$ is complete.

$\operatorname{Ded}_{N} S$ is complete.

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$ and let $\operatorname{Ded}_{N}(S)$ denote the deductive closure of S with respect to N. Then $\operatorname{Ded}_{N}(S)$ is complete.
Proof. Recall that N is $G+$ DSR, where DSR is the rule

$$
\frac{\varphi \quad \varphi \vdash \psi}{\psi}
$$

$\operatorname{Ded}_{N} S$ is complete.

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$ and let $\operatorname{Ded}_{N}(S)$ denote the deductive closure of S with respect to N. Then $\operatorname{Ded}_{N}(S)$ is complete.
Proof. Recall that N is $G+$ DSR, where DSR is the rule

$$
\frac{\varphi \quad \varphi \vdash \psi}{\psi}
$$

Hence, $\operatorname{Ded}_{N}(S)$ is the upward closure of $\operatorname{Ded}_{G}(S)$, which is pre-complete.

Outline

I. A coequational language
II. A coequational calculus
III. $\operatorname{Ded}_{G} S$ is pre-complete
IV. $\operatorname{Ded}_{N} S$ is complete
V. An implicational language
VI. An implicational calculus
VII. $\operatorname{Ded}_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

Outline

A coequational language

A coequational calculus
Ded S is pre-complete
Ded S is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

An implicational language

Define $\mathcal{L}_{\text {Imp }}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every
$p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

An implicational language

Define $\mathcal{L}_{\text {lmp }}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

Reminder: This is not the same as $(\langle A, \alpha\rangle \not \vDash \varphi$ or $\langle A, \alpha\rangle \models \psi$). That would be true if either there is some p such that $\operatorname{lm}(p) \not \leq \llbracket \varphi \rrbracket$ or for all $p, \operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

An implicational language

Define $\mathcal{L}_{\mathrm{Imp}}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

This is also not the same as $\langle A, \alpha\rangle \models \neg \varphi \vee \psi$ (if $\mathrm{Sub}(U H C)$ is a Heyting algebra).

An implicational language

Define $\mathcal{L}_{\text {Imp }}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

Note:

$$
\langle A, \alpha\rangle \models \varphi \operatorname{iff}\langle A, \alpha\rangle \models \top \Rightarrow \varphi,
$$

where $T=(H C=H C)$.

Outline

A coequational language

A coequational calculus
Ded S is pre-complete
Ded S is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

Outline

A cocquational language
II. A coequational calculus
III. Ded G is pre-complete
IV. Ded $\sqrt{ } S$ is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

An implicational calculus

The following rules are sound.

$$
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E}
$$

An implicational calculus

The following rules are sound.

$$
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} \quad \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I}
$$

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi \Rightarrow \square \varphi}{} \square-\mathrm{I}
\end{array}
$$

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge-\mathrm{I}} \\
\frac{\varphi \psi_{i}}{\varphi \Rightarrow \square \varphi} \square-\mathrm{I} & \frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text { Subst }
\end{array}
$$

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge \text {-E } & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge \text {-I } \\
\frac{\varphi \text { 和 }}{\varphi \Rightarrow \square \varphi} \square \mathrm{I} & \frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text { Subst } \\
\frac{\varphi \Rightarrow \psi \quad \psi \Rightarrow \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{Cut} &
\end{array}
$$

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi=\square \varphi}{\varphi \Rightarrow \mathrm{I}} & \frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text { Subst } \\
\frac{\varphi \Rightarrow \psi \quad \psi \Rightarrow \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{Cut} &
\end{array}
$$

Let's call this logic G^{i}, again because it seems a reasonably good logic.

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi \Rightarrow \square \varphi}{\varphi \Rightarrow-\mathrm{I}} & \frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text { Subst } \\
\frac{\varphi \Rightarrow \psi \quad \psi \Rightarrow \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{Cut} & \frac{\varphi \Rightarrow \psi \psi \psi \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{DSR}
\end{array}
$$

It's that damned semantic rule again. Let's call this N^{i} for not so good implicational logic.

A couple of handy operators

We say that a coequation φ is S-minimal just in case, whenever $S \models \varphi \Rightarrow \psi$, then $\varphi \vdash \psi$.

A couple of handy operators

We say that a coequation φ is S-minimal just in case, whenever $S \models \varphi \Rightarrow \psi$, then $\varphi \vdash \psi$. Given $S \subseteq \mathcal{L}_{\text {Imp }}$, define two operators
$\mathrm{Sub}(U H C) \rightarrow \mathrm{Sub}(U H C)$:

$$
\begin{aligned}
& \operatorname{cons}_{S} \varphi=\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
& \operatorname{ent}_{S}(\varphi)=\bigvee\{\psi \leq \varphi \mid \psi \in S \text {-minimal }\}
\end{aligned}
$$

A couple of handy operators

We say that a coequation φ is S-minimal just in case, whenever $S \models \varphi \Rightarrow \psi$, then $\varphi \vdash \psi$. Given $S \subseteq \mathcal{L}_{\text {Imp }}$, define two operators
$\mathrm{Sub}(U H C) \rightarrow \mathrm{Sub}(U H C)$:

$$
\begin{aligned}
& \operatorname{cons}_{S} \varphi=\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
& \operatorname{ent}_{S}(\varphi)=\bigvee\{\psi \leq \varphi \mid \psi \in S \text {-minimal }\}
\end{aligned}
$$

$\operatorname{cons}_{S} \varphi$ is the meet of the consequents of φ in S.

A couple of handy operators

$$
\begin{aligned}
& \operatorname{cons}_{S} \varphi=\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
& \operatorname{ent}_{S}(\varphi)=\bigvee\{\psi \leq \varphi \mid \psi \in S \text {-minimal }\}
\end{aligned}
$$

Lemma. $\operatorname{ent}_{S}(\varphi)$ is S-minimal, and hence is the greatest S-minimal subobject below φ.

A couple of handy operators

$$
\begin{aligned}
& \operatorname{cons}_{S} \varphi=\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
& \operatorname{ent}_{S}(\varphi)=\bigvee\{\psi \leq \varphi \mid \psi \in S \text {-minimal }\}
\end{aligned}
$$

Lemma.

$$
\operatorname{ent}_{S} \varphi=\bigwedge\{\psi \mid \operatorname{Mod}(S) \models \varphi \Rightarrow \psi\}
$$

A couple of handy operators

$$
\begin{aligned}
& \operatorname{cons}_{S} \varphi=\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
& \operatorname{ent}_{S}(\varphi)=\bigvee\{\psi \leq \varphi \mid \psi \in S \text {-minimal }\}
\end{aligned}
$$

Lemma.

$$
\operatorname{ent}_{S} \varphi=\bigwedge\{\psi \mid \operatorname{Mod}(S) \models \varphi \Rightarrow \psi\}
$$

So, S is pre-complete iff for every φ, we have $\varphi \Rightarrow$ $\operatorname{ent}_{S} \varphi \in S$. Our goal is to show that $\operatorname{Ded}_{G^{i}} S$ contains $\varphi \Rightarrow \operatorname{ent}_{S} \varphi$.

Definition of EIEIO

Call an operator 0 : $\mathcal{L}_{\text {Imp }} \rightarrow \mathcal{L}_{\text {Imp }}$ an endomorphism-invariant interior operator (EIEIO) just in case it satisfies the following axioms.

$$
\overline{\square \varphi \vdash \square \llbracket \varphi} \mathrm{S} / \mathrm{C}
$$

Definition of EIEIO

Call an operator $\square: \mathcal{L}_{\text {Imp }} \rightarrow \mathcal{L}_{\text {Imp }}$ an endomorphism-invariant interior operator (EIEIO) just in case it satisfies the following axioms.

$$
\frac{}{\square \varphi \vdash \square \square \varphi} \text { S/C } \quad \frac{\varphi \vdash \psi}{\square \varphi \vdash \llbracket \psi} \text { Monotone }
$$

Definition of EIEIO

Call an operator $0: \mathcal{L}_{\text {Imp }} \rightarrow \mathcal{L}_{\text {Imp }}$ an endomorphism-invariant interior operator (EIEIO) just in case it satisfies the following axioms.

$\overline{\square \varphi \vdash \varphi}$ Deflationary

Definition of EIEIO

Call an operator $\square: \mathcal{L}_{\text {Imp }} \rightarrow \mathcal{L}_{\text {Imp }}$ an endomorphism-invariant interior operator (EIEIO) just in case it satisfies the following axioms.
$\overline{\text { ஏ } \varphi \vdash \square \boxtimes \varphi} \mathrm{S} / \mathrm{C}$
$\frac{\varphi \vdash \psi}{\square \varphi \vdash \boxtimes \psi}$ Monotone
$\overline{\square \varphi \vdash \varphi}$ Deflationary
$\overline{\text { ஏ } \varphi \text { 『 } \varphi}$ Idempotent

Definition of EIEIO

Call an operator 0 ： $\mathcal{L}_{\text {Imp }} \rightarrow \mathcal{L}_{\text {Imp }}$ an endomorphism－invariant interior operator（EIEIO）just in case it satisfies the following axioms．

$$
\begin{aligned}
& \overline{\square \varphi \vdash \square \square \varphi} \text { S/C } \quad \frac{\varphi \vdash \psi}{\square \varphi \vdash \text { Monotone }} \\
& \overline{\square \varphi \vdash \varphi} \text { Deflationary } \overline{\text { ஏ } \varphi \vdash \text { 『『 } \varphi} \text { Idempotent } \\
& \frac{h: H C \longrightarrow H C}{\exists x(\text { ■ } \varphi(x) \wedge h(x)=y) \vdash \text { ■ }(\exists x(\varphi(x) \wedge h(x)=y))} \text { FEI }
\end{aligned}
$$

Definition of EIEIO

$$
\begin{aligned}
& \overline{\square \varphi \vdash \varphi} \text { Deflationary } \overline{\text { ஏ } \varphi \vdash \text { ØØ } \varphi} \text { Idempotent } \\
& h: H C \longrightarrow H C \\
& \overline{\exists x(\square \varphi(x) \wedge h(x)=y) \vdash \square(\exists x(\varphi(x) \wedge h(x)=y))} \text { FEI }
\end{aligned}
$$

In other words, an operator \square is EIEIO just in case

- \quad o is a comonad (deflationary, idempotent, monotone);
- \quad O is fully endomorphism invariant - for all

$$
\begin{aligned}
& h: H C \rightarrow H C, \\
& \exists x(\square \varphi(x) \wedge h(x)=y) \vdash \square(\exists x(\varphi(x) \wedge h(x)=y)) .
\end{aligned}
$$

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Lemma. ent ${ }_{S}$ is the greatest EIEIO suboperator of $\square \circ \operatorname{cons}_{S}$. That is, ent ${ }_{S} \leq \square \circ \operatorname{cons}_{S}$ and for every $\square: \operatorname{Sub}(U H C) \rightarrow \mathrm{Sub}(U H C)$ in EIEIO such that $\square \leq \square \circ \operatorname{cons}_{S}$, also $\square \leq \operatorname{ent}_{S}$.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Lemma. ent ${ }_{S}$ is the greatest EIEIO suboperator of $\square \circ \operatorname{cons}_{S}$. That is, ent ${ }_{S} \leq \square \circ \operatorname{cons}_{S}$ and for every $\square: \operatorname{Sub}(U H C) \rightarrow \mathrm{Sub}(U H C)$ in EIEIO such that $\square \leq \square \circ \operatorname{cons}_{S}$, also $\square \leq \operatorname{ent}_{S}$.
Lemma. If S is deductively closed, then cons $_{S}$ is an EIEIO. In other words, $\operatorname{cons}_{\operatorname{Ded}_{G_{i}} S}$ is an EIEIO.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Lemma. If S is deductively closed, then cons_{S} is an EIEIO. In other words, cons $\operatorname{Ded}_{G^{i}} S$ is an EIEIO.
Corollary. cons $\operatorname{Ded}_{G^{i}} S=\operatorname{ent}_{S}$.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Corollary. cons Ded $_{G^{i}} S=$ ent $_{S}$.
Proof. $\operatorname{cons}_{\operatorname{Ded}_{G^{i}} S}$ is an EIEIO and a suboperator of
$\square \circ \operatorname{cons}_{S}$.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Corollary. cons Ded $_{G^{i}} S=\operatorname{ent}_{S}$.
Proof. $\operatorname{cons}_{\operatorname{Ded}_{G^{i}} S}$ is an EIEIO and a suboperator of
$\square \circ \operatorname{cons}_{S}$. Hence, $\operatorname{cons}_{\operatorname{Ded}_{G^{i}}} \leq$ ent $_{S}$.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Corollary. cons Ded $_{G^{i}} S=\operatorname{ent}_{S}$.
Proof. $\operatorname{cons}_{\operatorname{Ded}_{G i} S}$ is an EIEIO and a suboperator of
$\square \circ \operatorname{cons}_{S}$. Hence, $\boldsymbol{c o n s}_{\operatorname{Ded}_{G^{i}} S} \leq$ ent $_{S}$. The other inclusion follows from the fact that G^{i} is sound.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Theorem. $\operatorname{Ded}_{G^{i}} S$ is pre-complete.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Theorem. $\operatorname{Ded}_{G^{i}} S$ is pre-complete.
Proof. It suffices to show that $\operatorname{Ded}_{G^{i}} S$ contains $\varphi \Rightarrow \operatorname{ent}_{S} \varphi$ for each $\varphi \in \mathcal{L}_{\text {Coeq }}$.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Theorem. $\operatorname{Ded}_{G^{i}} S$ is pre-complete.
Proof. It suffices to show that $\operatorname{Ded}_{G^{i}} S$ contains $\varphi \Rightarrow \operatorname{ent}_{S} \varphi$ for each $\varphi \in \mathcal{L}_{\text {Coeq }}$. Thus, it suffices to show that $\operatorname{Ded}_{G^{i}} S$ contains each $\varphi \Rightarrow \operatorname{cons}_{\operatorname{Ded}_{G^{i}} S} \varphi$.

$\operatorname{Ded}_{G^{i}} S$ is pre-complete.

Theorem. $\operatorname{Ded}_{G^{i}} S$ is pre-complete.
Proof. It suffices to show that $\operatorname{Ded}_{G^{i}} S$ contains $\varphi \Rightarrow \operatorname{ent}_{S} \varphi$ for each $\varphi \in \mathcal{L}_{\text {Coeq }}$. Thus, it suffices to show that $\operatorname{Ded}_{G^{i}} S$ contains each $\varphi \Rightarrow \operatorname{cons}_{\operatorname{Ded}_{G^{i}} S} \varphi$. This is clear, since

$$
\operatorname{cons}_{\operatorname{Ded}_{G^{i}} S} \varphi=\bigwedge\left\{\psi \mid \varphi \Rightarrow \psi \in \operatorname{Ded}_{G^{i}} S\right\}
$$

and $\operatorname{Ded}_{G^{i}} S$ is closed under the rule $\frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge$-I

$\operatorname{Ded}_{N^{i}} S$ is complete.

 Theorem. $\operatorname{Ded}_{N^{i}} S$ is complete.
$\operatorname{Ded}_{N^{i}} S$ is complete.

Theorem. Ded $N_{N^{i}} S$ is complete.
Proof. N^{i} is the logic G^{i} with the additional rule

$$
\frac{\varphi \Rightarrow \psi \quad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{DSR}
$$

$\operatorname{Ded}_{N^{i}} S$ is complete.

Theorem. Ded $N_{N^{i}} S$ is complete.
Proof. N^{i} is the logic G^{i} with the additional rule

$$
\frac{\varphi \Rightarrow \psi \quad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{DSR}
$$

By the previous argument, we see that $\operatorname{Ded}_{N^{i}} S$ is pre-complete.

$\operatorname{Ded}_{N^{i}} S$ is complete.

Theorem. Ded $N_{N^{i}} S$ is complete.
Proof. N^{i} is the logic G^{i} with the additional rule

$$
\frac{\varphi \Rightarrow \psi \quad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{DSR}
$$

By the previous argument, we see that $\operatorname{Ded}_{N^{i}} S$ is pre-complete. Clearly, it is also upward-closed and hence complete.

Outline

A cocquational language
II. A coequational calculus
III. Ded C_{G} is pre-complete
IV. Ded $\sqrt{ } S$ is complete
V. An implicational language
VI. An implicational calculus
VII. Ded ${ }_{G^{i}} S$ is pre-complete
VIII. Ded ${ }_{N^{i}} S$ is complete

Outline

I. A coequational language
II. A coequational calculus
III. Ded A^{S} is pre-complete
IV. Ded N_{S} is complete
V. An implicational language
VI. An implicational calculus
VII. Ded GiS is pre-complete
VIII. Ded ${ }_{N i} S$ is complete

Some open questions

What can we do to the damned semantic rules to make them more plausible as logical rules?

Some open questions

What can we do to the damned semantic rules to make them more plausible as logical rules?

- Completeness proofs for related operators, including $\mathcal{H} \Sigma^{+}$.

Some open questions

- What can we do to the damned semantic rules to make them more plausible as logical rules?
- Completeness proofs for related operators, including $\mathcal{H} \Sigma^{+}$.
- An example of reasoning with one of these logics - is that even plausible?

