A Step Towards Deductive Completeness

Jesse Hughes

jesseh@cs.kun.nl

University of Nijmegen

A Step Towards Deductive Completeness - p.1/23

I. A coequational language

- I. A coequational language
- II. A coequational calculus

I. A coequational language II. A coequational calculus III. $Ded_G S$ is pre-complete

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete
- VIII. $\operatorname{Ded}_{N^i} S$ is complete

Let \mathcal{C} satisfy the following conditions.

• C has all coproducts.

Let \mathcal{C} satisfy the following conditions.

- C has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.

Let \mathcal{C} satisfy the following conditions.

- C has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered
- C has enough S-injectives.

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered
- C has enough S-injectives.

Let $\Gamma: \mathcal{C} \to \mathcal{C}$ preserve \mathcal{S} -morphisms and suppose, further, that $U: \mathcal{C}_{\Gamma} \to \mathcal{C}$ has a right adjoint H.

Let \mathcal{C} satisfy the following conditions.

- \mathcal{C} has all coproducts.
- C has a factorization system $\langle \mathcal{H}, \mathcal{S} \rangle$.
- C is S-well-powered
- C has enough S-injectives.

Let $\Gamma: \mathcal{C} \to \mathcal{C}$ preserve S-morphisms and suppose, further, that $U: \mathcal{C}_{\Gamma} \to \mathcal{C}$ has a right adjoint H. Then, we know that \mathcal{C}_{Γ} satisfies the above conditions as well. Furthermore, Ucreates the factorization system in \mathcal{C}_{Γ} and \mathcal{C}_{Γ} has enough cofree S-injectives.

A coequation over C is an (isomorphism class of) S-morphism(s), $P \rightarrow UHC$.

A coequation over C is an (isomorphism class of) S-morphism(s), $P \rightarrow UHC$. A coalgebra $\langle A, \alpha \rangle$ satisfies P iff for every $p: \langle A, \alpha \rangle \rightarrow HC$, $\operatorname{Im}(p) \leq HC$.

A coalgebra $\langle A, \alpha \rangle$ satisfies P iff for every $p:\langle A, \alpha \rangle \rightarrow HC$, $\operatorname{Im}(p) \leq HC$.

Hereafter, we further assume that C has all meets of S-morphisms.

A coalgebra $\langle A, \alpha \rangle$ satisfies P iff for every $p:\langle A, \alpha \rangle \rightarrow HC$, $\operatorname{Im}(p) \leq HC$.

Hereafter, we further assume that C has all meets of S-morphisms. We denote the isomorphism classes of S-morphisms $P \rightarrow C$ in C by Sub(C) – however, this notation is merely suggestive.

Fix a S-injective $C \in C$. We define a simple language \mathcal{L}_{Coeq} (properly, \mathcal{L}_{Coeq}^C).

• For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.

Fix a S-injective $C \in C$. We define a simple language \mathcal{L}_{Coeq} (properly, \mathcal{L}_{Coeq}^C).

• For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.

• If
$$\varphi \in \mathcal{L}_{\mathsf{Coeq}}$$
, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.

Fix a S-injective $C \in C$. We define a simple language \mathcal{L}_{Coeq} (properly, \mathcal{L}_{Coeq}^C).

• For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.

• If
$$\varphi \in \mathcal{L}_{\mathsf{Coeq}}$$
, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.

• If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.

Fix a S-injective $C \in C$. We define a simple language \mathcal{L}_{Coeq} (properly, \mathcal{L}_{Coeq}^C).

• For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.

• If
$$\varphi \in \mathcal{L}_{\mathsf{Coeq}}$$
, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.

- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \to HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.

Fix a S-injective $C \in C$. We define a simple language \mathcal{L}_{Coeq} (properly, \mathcal{L}_{Coeq}^C).

• For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.

• If
$$\varphi \in \mathcal{L}_{\mathsf{Coeq}}$$
, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.

- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \to HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \to HC$, then $\exists y(\varphi(y) \land h(y) = x)$ is in $\mathcal{L}_{\mathsf{Coeq}}$.

- For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\exists y(\varphi(y) \land h(y) = x)$ is in $\mathcal{L}_{\mathsf{Coeq}}$.

$$\llbracket P \rrbracket = P$$

- For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\exists y(\varphi(y) \land h(y) = x)$ is in $\mathcal{L}_{\mathsf{Coeq}}$.

We define an interpretation $\llbracket - \rrbracket : \mathcal{L}_{\mathsf{Coeq}} \longrightarrow \mathsf{Sub}(UHC) :$

 $\llbracket \Box \varphi \rrbracket = \Box \llbracket \varphi \rrbracket$

- For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\exists y(\varphi(y) \land h(y) = x)$ is in $\mathcal{L}_{\mathsf{Coeq}}$.

$$\llbracket \bigwedge \varphi_i \rrbracket = \bigwedge \llbracket \varphi_i \rrbracket$$

- For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\exists y(\varphi(y) \land h(y) = x)$ is in $\mathcal{L}_{\mathsf{Coeq}}$.

$$[\![\varphi(h(x))]\!] = h^*[\![\varphi]\!]$$

- For every P in Sub(UHC), we introduce an atomic proposition P in \mathcal{L}_{Coeq} , i.e., $Sub(UHC) \subseteq \mathcal{L}_{Coeq}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$, then $\Box \varphi \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\{\varphi_i\}_{i\in I} \subseteq \mathcal{L}_{\mathsf{Coeq}}$, then $\bigwedge_I \varphi_i \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\varphi(h(x)) \in \mathcal{L}_{\mathsf{Coeq}}$.
- If $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ and $h: HC \longrightarrow HC$, then $\exists y(\varphi(y) \land h(y) = x)$ is in $\mathcal{L}_{\mathsf{Coeq}}$.

$$\llbracket \exists y(\varphi(y) \land h(y) = x) \rrbracket = \exists_h \llbracket \varphi \rrbracket$$

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete
- VIII. $\operatorname{Ded}_{N^i} S$ is complete

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete
- VIII. $\operatorname{Ded}_{N^i} S$ is complete

We say that a coalgebra $\langle A, \alpha \rangle$ satisfies a formula $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ (written $\langle A, \alpha \rangle \models \varphi$) just in case $\langle A, \alpha \rangle \models \llbracket \varphi \rrbracket$ in the sense of our previous talk.

We say that a coalgebra $\langle A, \alpha \rangle$ satisfies a formula $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$ (written $\langle A, \alpha \rangle \models \varphi$) just in case $\langle A, \alpha \rangle \models \llbracket \varphi \rrbracket$ in the sense of our previous talk. That is, $\langle A, \alpha \rangle \models \varphi$ just in case every homomorphism

 $\langle A, \alpha \rangle \rightarrow HC$ factors through the inclusion $\llbracket \varphi \rrbracket \rightarrow HC$.

That is, $\langle A, \alpha \rangle \models \varphi$ just in case every homomorphism $\langle A, \alpha \rangle \rightarrow HC$ factors through the inclusion $\llbracket \varphi \rrbracket \rightarrow HC$.

For a set $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$, we say that $\langle A, \alpha \rangle \models S$ just in case $\langle A, \alpha \rangle \models \varphi$ for each $\varphi \in S$.

That is, $\langle A, \alpha \rangle \models \varphi$ just in case every homomorphism $\langle A, \alpha \rangle \rightarrow HC$ factors through the inclusion $\llbracket \varphi \rrbracket \rightarrow HC$.

For a set $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$, we say that $\langle A, \alpha \rangle \models S$ just in case $\langle A, \alpha \rangle \models \varphi$ for each $\varphi \in S$.

We say that a collection $\mathbf{V} \subseteq \mathcal{C}_{\Gamma}$ satisfies S if each $\langle A, \alpha \rangle \in \mathbf{V}$ satisfies S.

(Pre-)complete sets of formulas

Recall our definition of *generating coequation* for a collection of coalgebras V. Gen V satisfies the following fixed point description.

•
$$\mathbf{V} \models \mathsf{Gen} \, \mathbf{V};$$

• If
$$\mathbf{V} \models P'$$
, then $\operatorname{Gen} \mathbf{V} \vdash P'$.

Recall our definition of *generating coequation* for a collection of coalgebras V.

Gen V satisfies the following fixed point description.

•
$$\mathbf{V} \models \mathsf{Gen} \, \mathbf{V};$$

• If
$$\mathbf{V} \models P'$$
, then $\operatorname{Gen} \mathbf{V} \vdash P'$.

Call a set $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket = \mathsf{Gen} \mathsf{Mod}(S)$.

Recall our definition of *generating coequation* for a collection of coalgebras V.

Gen V satisfies the following fixed point description.

•
$$\mathbf{V} \models \mathsf{Gen} \, \mathbf{V};$$

• If
$$\mathbf{V} \models P'$$
, then $\operatorname{Gen} \mathbf{V} \vdash P'$.

Call a set $S \subseteq \mathcal{L}_{Coeq}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket = \text{Gen Mod}(S)$. Call S complete if, for every φ such that $\text{Mod}(S) \models \varphi$, we have $\varphi \in S$.

Call a set $S \subseteq \mathcal{L}_{Coeq}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket = \text{Gen Mod}(S)$. Call S complete if, for every φ such that $\text{Mod}(S) \models \varphi$, we have $\varphi \in S$. We write $\varphi \vdash \psi$ just in case $\llbracket \varphi \rrbracket \vdash \llbracket \psi \rrbracket$, that is, just in case there is a morphism $\llbracket \varphi \rrbracket \rightarrow \llbracket \psi \rrbracket$ making the diagram below commute.

Call a set $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$ of coequations over C pre-complete if there is a $\varphi \in S$ such that $\llbracket \varphi \rrbracket = \mathsf{Gen} \mathsf{Mod}(S)$. Call S complete if, for every φ such that $\mathsf{Mod}(S) \models \varphi$, we have $\varphi \in S$. A pre-complete set S is complete just in case it is upward-closed, in the sense that if $\varphi \vdash \psi$ and $\varphi \in S$, then $\psi \in S$.

An inference rule $\frac{\varphi_1 \dots \varphi_n}{\psi}$ is sound just in case, whenever $\langle A, \alpha \rangle \models \varphi_1, \dots, \langle A, \alpha \rangle \models \varphi_n$, then $\langle A, \alpha \rangle \models \psi$.

An inference rule $\frac{\varphi_1 \dots \varphi_n}{\psi}$ is sound just in case, whenever $\langle A, \alpha \rangle \models \varphi_1, \dots, \langle A, \alpha \rangle \models \varphi_n$, then $\langle A, \alpha \rangle \models \psi$.

More generally, an (infinitary) inference rule $\frac{\{\varphi_i\}_{i\in I}}{\psi}$ is sound just in case, whenever $\langle A, \alpha \rangle \models \varphi_i$ for every $i \in I$, then $\langle A, \alpha \rangle \models \psi$.

More generally, an (infinitary) inference rule $\frac{\{\varphi_i\}_{i\in I}}{\psi}$ is sound just in case, whenever $\langle A, \alpha \rangle \models \varphi_i$ for every $i \in I$, then $\langle A, \alpha \rangle \models \psi$.

Theorem. The rule
$$\bigwedge_{\varphi_i} \varphi_i \wedge E$$
 is sound.

Theorem. \bigwedge -*E* is sound.

Proof. Suppose $\langle A, \alpha \rangle \models \bigwedge \varphi_i$ and $p: \langle A, \alpha \rangle \rightarrow HC$. We must show that $\mathsf{Im}(p) \leq \llbracket \varphi_i \rrbracket$.

Theorem. \bigwedge -*E* is sound.

Proof. Suppose $\langle A, \alpha \rangle \models \bigwedge \varphi_i$ and $p: \langle A, \alpha \rangle \rightarrow HC$. We must show that $\mathsf{Im}(p) \leq \llbracket \varphi_i \rrbracket$.

 \gg

Theorem. \bigwedge -*E* is sound.

Proof. Suppose $\langle A, \alpha \rangle \models \bigwedge \varphi_i$ and $p: \langle A, \alpha \rangle \rightarrow HC$. We must show that $\mathsf{Im}(p) \leq \llbracket \varphi_i \rrbracket$. But we know $\mathsf{Im}(p) \leq \llbracket \bigwedge \varphi_i \rrbracket \leq \llbracket \varphi_i \rrbracket$.

Theorem. \bigwedge -*E* is sound.

Proof. Suppose $\langle A, \alpha \rangle \models \bigwedge \varphi_i$ and $p: \langle A, \alpha \rangle \rightarrow HC$. We must show that $\mathsf{Im}(p) \leq \llbracket \varphi_i \rrbracket$. But we know $\mathsf{Im}(p) \leq \llbracket \bigwedge \varphi_i \rrbracket \leq \llbracket \varphi_i \rrbracket$.

This is a sound rule, but it's quite useless for our purposes.

The following rules are sound.

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I}$$

If $\operatorname{Im}(p:\langle A, \alpha \rangle \to HC) \leq \llbracket \varphi_i \rrbracket$ for each $i \in I$, then $\operatorname{Im}(p) \leq \bigwedge \llbracket \varphi_i \rrbracket$.

The following rules are sound.

 $\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I} \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -\mathbf{I}$

If $\operatorname{Im}(p:\langle A, \alpha \rangle \to HC) \leq \llbracket \varphi \rrbracket$, then $\operatorname{Im}(p) \leq \Box \llbracket \varphi \rrbracket$ (because $\operatorname{Im}(p)$ is a subcoalgebra contained in φ).

The following rules are sound.

h :

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge_{\varphi} \varphi_i} \wedge -I \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -I$$

$$\frac{\varphi}{\varphi(h(x))} \text{Subst}$$

Here, Subst applies for every Γ -homomorphism
 $h: HC \rightarrow HC$.

The following rules are sound.

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I} \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -\mathbf{I}$$
$$\frac{\varphi}{\varphi(h(x))}$$
Subst

Let $p:HC \rightarrow HC$ be given.

 $\mathsf{Im}(p) \le h^* \llbracket \varphi \rrbracket \text{ iff } \exists_h \mathsf{Im}(p) \le \llbracket \varphi \rrbracket.$

The following rules are sound.

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I} \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -\mathbf{I}$$
$$\frac{\varphi}{\varphi(h(x))} \text{ Subst}$$

Let $p:HC \rightarrow HC$ be given.

 $\mathsf{Im}(p) \le h^*[\![\varphi]\!] \text{ iff } \mathsf{Im}(h \circ p) \le [\![\varphi]\!].$

The following rules are sound.

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I} \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -\mathbf{I}$$
$$\frac{\varphi}{\varphi(h(x))} \text{ Subst}$$

Let $p:HC \rightarrow HC$ be given.

 $\operatorname{Im}(p) \leq h^* \llbracket \varphi \rrbracket \text{ iff } \operatorname{Im}(h \circ p) \leq \llbracket \varphi \rrbracket.$ Hence, if for every $q: HC \rightarrow HC$, $\operatorname{Im}(q) \leq \llbracket \varphi \rrbracket$, then $\operatorname{Im}(p) \leq h^* \llbracket \varphi \rrbracket.$

A Step Towards Deductive Completeness – p.9/23

The following rules are sound.

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I} \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -\mathbf{I}$$
$$\frac{\varphi}{\varphi(h(x))}$$
Subst

Let's call this logic G (for pretty good logic).

The following rules are sound.

$$\frac{\{\varphi_i\}_{i\in I}}{\bigwedge \varphi_i} \bigwedge -\mathbf{I} \qquad \qquad \frac{\varphi}{\Box \varphi} \Box -\mathbf{I} \\ \frac{\varphi}{\varphi(h(x))} \operatorname{Subst} \qquad \qquad \frac{\varphi \qquad \varphi \vdash \psi}{\psi} \operatorname{DSR} \\ \frac{\varphi}{\psi}$$

This is clearly a sound rule – if every map $\langle A, \alpha \rangle \rightarrow HC$ factors through $\llbracket \varphi \rrbracket$ and $\llbracket \varphi \rrbracket \leq \llbracket \psi \rrbracket$ then every such morphism also factors through $\llbracket \psi \rrbracket$.

The following rules are sound.

However, it's not a rule we would generally like in our socalled logic, as it depends on the semantics of φ and ψ . Hence, we call it DSR for Damned Semantic Rule.

The following rules are sound.

We call the logic G + DSR a not-so-good logic, N.

Outline

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete
- VIII. $\operatorname{Ded}_{N^i} S$ is complete

Outline

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete
- VIII. $\operatorname{Ded}_{N^i} S$ is complete

Lemma.

$$\square \llbracket \varphi \rrbracket = \bigwedge \{ h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \}.$$

In other terms,

 $\square \llbracket \varphi \rrbracket = \llbracket \bigwedge \{ \varphi(h(x)) \mid h : HC \longrightarrow HC \} \rrbracket.$

Lemma.

$$\square \llbracket \varphi \rrbracket = \bigwedge \{ h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \}.$$

Proof. Recall $\square \llbracket \varphi \rrbracket = \bigvee \{ P \mid \forall h : HC \longrightarrow HC : \exists_h P \leq \llbracket \varphi \rrbracket \}.$

 \supseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$$\exists_k \bigwedge \{h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \} \leq \llbracket \varphi \rrbracket.$$

Lemma.

$$\square \llbracket \varphi \rrbracket = \bigwedge \{ h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \}.$$

Proof. Recall $\square \llbracket \varphi \rrbracket = \bigvee \{ P \mid \forall h : HC \longrightarrow HC : \exists_h P \leq \llbracket \varphi \rrbracket \}.$

 \supseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$$\bigwedge \{h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \} \leq k^* \llbracket \varphi \rrbracket.$$

A Step Towards Deductive Completeness – p.11/23

Lemma.

$$\square \llbracket \varphi \rrbracket = \bigwedge \{ h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \}.$$

Proof. Recall $\square \llbracket \varphi \rrbracket = \bigvee \{ P \mid \forall h : HC \longrightarrow HC : \exists_h P \leq \llbracket \varphi \rrbracket \}.$

 \supseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$$\bigwedge \{h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \} \le k^* \llbracket \varphi \rrbracket.$$

 \subseteq : It suffices to show that for all $k: HC \rightarrow HC$,

A Step Towards Deductive Completeness – p.11/2000

Lemma.

$$\square \llbracket \varphi \rrbracket = \bigwedge \{ h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \}.$$

Proof. Recall $\square \llbracket \varphi \rrbracket = \bigvee \{ P \mid \forall h : HC \longrightarrow HC : \exists_h P \leq \llbracket \varphi \rrbracket \}.$

 \supseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$$\bigwedge \{h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \} \leq k^* \llbracket \varphi \rrbracket.$$

 \subseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$\exists_k \boxtimes \llbracket \varphi \rrbracket \leq \llbracket \varphi \rrbracket.$

Lemma.

$$\square \llbracket \varphi \rrbracket = \bigwedge \{ h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \}.$$

Proof. Recall $\square \llbracket \varphi \rrbracket = \bigvee \{ P \mid \forall h : HC \longrightarrow HC : \exists_h P \leq \llbracket \varphi \rrbracket \}.$

 \supseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$$\bigwedge \{h^* \llbracket \varphi \rrbracket \mid h : HC \longrightarrow HC \} \le k^* \llbracket \varphi \rrbracket.$$

 \subseteq : It suffices to show that for all $k: HC \rightarrow HC$,

$$\exists_k \boxtimes \llbracket \varphi \rrbracket \leq \llbracket \varphi \rrbracket.$$

But, $\square \llbracket \varphi \rrbracket$ is invariant, so $\exists_k \square \llbracket \varphi \rrbracket \le \square \llbracket \varphi \rrbracket \le \varphi$.

Let $Ded_G(S)$ denote the deductive closure of S under the logic G. We claim that for every S, $Ded_G(S)$ is precomplete.

Let $Ded_G(S)$ denote the deductive closure of S under the logic G. We claim that for every S, $Ded_G(S)$ is pre-complete.

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$. Then $\mathsf{Ded}_G(S)$ is pre-complete.

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$. Then $\mathsf{Ded}_G(S)$ is pre-complete.

Proof. Let $\psi = \bigwedge S$. $\frac{S}{\psi} \bigwedge -I$

A Step Towards Deductive Completeness – p.12/23

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$. Then $\mathsf{Ded}_G(S)$ is pre-complete. Proof. Let $\psi = \bigwedge S$.

$$\frac{S}{\psi} \bigwedge -I$$

$$\overline{\{\psi(h(x)) \mid h: HC \longrightarrow HC\}}$$
Subst

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$. Then $\mathsf{Ded}_G(S)$ is pre-complete. Proof. Let $\psi = \bigwedge S$.

$$\frac{S}{\psi} \bigwedge -I$$

$$\frac{\{\psi(h(x)) \mid h: HC \longrightarrow HC\}}{\{\psi(h(x)) \mid h: HC \longrightarrow HC\}} \text{Subst}$$

$$\bigwedge \{\psi(h(x)) \mid h: HC \longrightarrow HC\}$$

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$. Then $\mathsf{Ded}_G(S)$ is pre-complete. Proof. Let $\psi = \bigwedge S$.

A Step Towards Deductive Completeness - p.12/23

 \gg

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$. Then $\mathsf{Ded}_G(S)$ is pre-complete. Proof. So, we see that $S \vdash \Box \bigwedge \{\psi(h(x)) \mid h: HC \to HC\}$. Now, by the lemma,

$$\llbracket\Box \bigwedge \{\psi(h(x)) \mid h : HC \longrightarrow HC\} \rrbracket = \Box \boxtimes \llbracket\psi \rrbracket,$$

and by the Invariance Theorem, $\Box \boxtimes \llbracket \psi \rrbracket \leq \llbracket \varphi \rrbracket$.

$\operatorname{\mathsf{Ded}}_N S$ is complete.

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$ and let $\mathsf{Ded}_N(S)$ denote the deductive closure of S with respect to N. Then $\mathsf{Ded}_N(S)$ is complete.

$\operatorname{\mathsf{Ded}}_N S$ is complete.

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$ and let $\mathsf{Ded}_N(S)$ denote the deductive closure of S with respect to N. Then $\mathsf{Ded}_N(S)$ is complete.

Proof. Recall that N is G + DSR, where DSR is the rule

$$\frac{\varphi \quad \varphi \vdash \psi}{\psi}$$

$\operatorname{\mathsf{Ded}}_N S$ is complete.

Theorem. Let $S \subseteq \mathcal{L}_{\mathsf{Coeq}}$ and let $\mathsf{Ded}_N(S)$ denote the deductive closure of S with respect to N. Then $\mathsf{Ded}_N(S)$ is complete.

Proof. Recall that N is G + DSR, where DSR is the rule

$$\frac{\varphi \quad \varphi \vdash \psi}{\psi}$$

Hence, $\mathsf{Ded}_N(S)$ is the upward closure of $\mathsf{Ded}_G(S)$, which is pre-complete.

Outline

- I. A coequational language
- II. A coequational calculus
- III. $\operatorname{Ded}_G S$ is pre-complete
- IV. $\operatorname{Ded}_N S$ is complete
 - V. An implicational language
- VI. An implicational calculus
- VII. $\operatorname{Ded}_{G^i} S$ is pre-complete
- VIII. $\operatorname{Ded}_{N^i} S$ is complete

Outline

III. $Ded_G S$ is pre-complete IV. $Ded_N S$ is complete V. An implicational language VI. An implicational calculus VII. $Ded_{G^i} S$ is pre-complete VIII. $\operatorname{Ded}_{N^i} S$ is complete

Define $\mathcal{L}_{\mathsf{Imp}} = \{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\mathsf{Coeq}}\}.$ Say that $\langle A, \alpha \rangle \models \varphi \Rightarrow \psi$ just in case, for every $p: \langle A, \alpha \rangle \to HC$ such that $\mathsf{Im}(p) \leq \llbracket \varphi \rrbracket$, also $\mathsf{Im}(p) \leq \llbracket \psi \rrbracket$.

Define $\mathcal{L}_{\mathsf{Imp}} = \{ \varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\mathsf{Coeg}} \}.$ Say that $\langle A, \alpha \rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha \rangle \to HC$ such that $\mathsf{Im}(p) \leq \llbracket \varphi \rrbracket$, also $\mathsf{Im}(p) \leq \llbracket \psi \rrbracket$.

Reminder: This is not the same as $(\langle A, \alpha \rangle \neq \varphi \text{ or })$ $\langle A, \alpha \rangle \models \psi$). That would be true if either there is some p such that $\operatorname{Im}(p) \not\leq \llbracket \varphi \rrbracket$ or for all $p, \operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

Define $\mathcal{L}_{\mathsf{Imp}} = \{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\mathsf{Coeq}}\}.$ Say that $\langle A, \alpha \rangle \models \varphi \Rightarrow \psi$ just in case, for every $p: \langle A, \alpha \rangle \to HC$ such that $\mathsf{Im}(p) \leq \llbracket \varphi \rrbracket$, also $\mathsf{Im}(p) \leq \llbracket \psi \rrbracket.$ $A \xrightarrow{p} UHC \qquad A \xrightarrow{p} UHC$

This is also not the same as $\langle A, \alpha \rangle \models \neg \varphi \lor \psi$ (if Sub(UHC) is a Heyting algebra).

Define $\mathcal{L}_{\mathsf{Imp}} = \{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\mathsf{Coeq}}\}.$ Say that $\langle A, \alpha \rangle \models \varphi \Rightarrow \psi$ just in case, for every $p: \langle A, \alpha \rangle \to HC$ such that $\mathsf{Im}(p) \leq \llbracket \varphi \rrbracket$, also $\mathsf{Im}(p) \leq \llbracket \psi \rrbracket$.

Note:

$$\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \top \Rightarrow \varphi,$$

where $\top = (HC = HC)$.

Outline

III. $Ded_G S$ is pre-complete IV. $Ded_N S$ is complete V. An implicational language VI. An implicational calculus VII. $Ded_{G^i} S$ is pre-complete VIII. $\operatorname{Ded}_{N^i} S$ is complete

Outline

III. $Ded_G S$ is pre-complete IV. $Ded_N S$ is complete V. An implicational language VI. An implicational calculus VII. $Ded_{G^i} S$ is pre-complete VIII. $\operatorname{Ded}_{N^i} S$ is complete

$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \psi_i} \bigwedge -\mathbf{E}$$

$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \psi_i} \bigwedge -\mathbf{E} \qquad \qquad \frac{\{\varphi \Rightarrow \psi_i\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_i} \bigwedge -\mathbf{I}$$

$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \psi_i} \bigwedge -\mathbf{E} \qquad \qquad \frac{\{\varphi \Rightarrow \psi_i\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_i} \bigwedge -\mathbf{I}$$

$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \psi_i} \bigwedge -\mathbf{E}$$

$$\overline{\varphi \Rightarrow \Box \varphi} \ \Box \text{-I}$$

$$\frac{\{\varphi \Rightarrow \psi_i\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_i} \bigwedge -\mathbf{I}$$
$$\frac{(\exists x(\varphi(x) \land h(x) = y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text{Subst}$$

The following rules are sound.

$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \psi_i} \bigwedge -E$$
$$\overline{\varphi \Rightarrow \Box \varphi} \Box -I$$

 $\frac{\varphi \Rightarrow \psi \qquad \psi \Rightarrow \vartheta}{\varphi \Rightarrow \vartheta} \operatorname{Cut}$

$$\frac{\{\varphi \Rightarrow \psi_i\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_i} \bigwedge -\mathbf{I}$$
$$\frac{(\exists x(\varphi(x) \land h(x) = y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text{Subst}$$

A Step Towards Deductive Completeness – p.17/23

Cut

The following rules are sound.

 $\varphi \Rightarrow \vartheta$

$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \psi_i} \bigwedge -\mathbf{E} \qquad \qquad \frac{\{\varphi \Rightarrow \psi_i\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_i} \bigwedge -\mathbf{I}$$
$$\frac{\varphi \Rightarrow \bigwedge \psi_i}{\varphi \Rightarrow \bigwedge \psi_i} \qquad \qquad \frac{[\exists x(\varphi(x) \land h(x) = y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text{Subst}$$
$$\varphi \Rightarrow \psi \land \psi \Rightarrow \psi$$

Let's call this logic G^i , again because it seems a reasonably good logic.

The following rules are sound.

$$\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \wedge -E \qquad \qquad \frac{\{\varphi \Rightarrow \psi_{i}\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \wedge -I \\ \frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \varphi} \square -I \qquad \qquad \frac{(\exists x(\varphi(x) \land h(x) = y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text{ Subst} \\ \frac{\varphi \Rightarrow \psi}{\varphi \Rightarrow \vartheta} \bigvee \psi \Rightarrow \vartheta \text{ Cut} \qquad \qquad \frac{\varphi \Rightarrow \psi \qquad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \text{ DSR}$$

It's that damned semantic rule again. Let's call this N^i for not so good implicational logic.

We say that a coequation φ is *S*-minimal just in case, whenever $S \models \varphi \Rightarrow \psi$, then $\varphi \vdash \psi$.

We say that a coequation φ is S-minimal just in case, whenever $S \models \varphi \Rightarrow \psi$, then $\varphi \vdash \psi$. Given $S \subseteq \mathcal{L}_{Imp}$, define two operators $Sub(UHC) \rightarrow Sub(UHC)$:

$$\operatorname{cons}_{S} \varphi = \bigwedge \{ \psi \mid \varphi \Rightarrow \psi \in S \}$$
$$\operatorname{ent}_{S}(\varphi) = \bigvee \{ \psi \leq \varphi \mid \psi \in S \operatorname{-minimal} \}$$

We say that a coequation φ is S-minimal just in case, whenever $S \models \varphi \Rightarrow \psi$, then $\varphi \vdash \psi$. Given $S \subseteq \mathcal{L}_{Imp}$, define two operators $Sub(UHC) \rightarrow Sub(UHC)$:

$$\operatorname{cons}_{S} \varphi = \bigwedge \{ \psi \mid \varphi \Rightarrow \psi \in S \}$$
$$\operatorname{ent}_{S}(\varphi) = \bigvee \{ \psi \leq \varphi \mid \psi \in S \operatorname{-minimal} \}$$

 $\mathbf{cons}_S \varphi$ is the meet of the consequents of φ in S.

$$\operatorname{cons}_{S} \varphi = \bigwedge \{ \psi \mid \varphi \Rightarrow \psi \in S \}$$
$$\operatorname{ent}_{S}(\varphi) = \bigvee \{ \psi \leq \varphi \mid \psi \in S \operatorname{-minimal} \}$$

Lemma. ent_S(φ) is S-minimal, and hence is the greatest S-minimal subobject below φ .

$$\operatorname{cons}_{S} \varphi = \bigwedge \{ \psi \mid \varphi \Rightarrow \psi \in S \}$$
$$\operatorname{ent}_{S}(\varphi) = \bigvee \{ \psi \leq \varphi \mid \psi \in S \operatorname{-minimal} \}$$

Lemma.

$$\operatorname{ent}_{S} \varphi = \bigwedge \{ \psi \mid \operatorname{Mod}(S) \models \varphi \Rightarrow \psi \}$$

A Step Towards Deductive Completeness – p.18/23

$$\operatorname{cons}_{S} \varphi = \bigwedge \{ \psi \mid \varphi \Rightarrow \psi \in S \}$$
$$\operatorname{ent}_{S}(\varphi) = \bigvee \{ \psi \leq \varphi \mid \psi \in S \operatorname{-minimal} \}$$

Lemma.

$$\mathbf{ent}_S \varphi = \bigwedge \{ \psi \mid \operatorname{\mathsf{Mod}}(S) \models \varphi \Rightarrow \psi \}$$

So, S is pre-complete iff for every φ , we have $\varphi \Rightarrow \operatorname{ent}_S \varphi \in S$. Our goal is to show that $\operatorname{Ded}_{G^i} S$ contains $\varphi \Rightarrow \operatorname{ent}_S \varphi$.

Call an operator $\boxdot: \mathcal{L}_{\mathsf{Imp}} \to \mathcal{L}_{\mathsf{Imp}}$ an *endomorphism-invariant interior operator* (EIEIO) just in case it satisfies the following axioms.

Call an operator $\boxdot: \mathcal{L}_{\mathsf{Imp}} \to \mathcal{L}_{\mathsf{Imp}}$ an *endomorphism-invariant interior operator* (EIEIO) just in case it satisfies the following axioms.

$$\frac{\varphi \vdash \psi}{\Box \varphi \vdash \Box \varphi} \, \mathbf{S/C} \qquad \qquad \frac{\varphi \vdash \psi}{\Box \varphi \vdash \Box \psi} \, \mathbf{Monotone}$$

Call an operator $\boxdot: \mathcal{L}_{Imp} \to \mathcal{L}_{Imp}$ an *endomorphism-invariant interior operator* (EIEIO) just in case it satisfies the following axioms.

$$\overline{\bigcirc \varphi \vdash \Box \oslash \varphi} \, \mathbf{S/C} \qquad \qquad \frac{\varphi \vdash \psi}{\boxdot \varphi \vdash \boxdot \psi} \, \mathbf{Monotone}$$

 $\frac{1}{\bigcirc \varphi \vdash \varphi} \text{ Deflationary}$

Call an operator $\boxdot: \mathcal{L}_{\mathsf{Imp}} \to \mathcal{L}_{\mathsf{Imp}}$ an *endomorphism-invariant interior operator* (EIEIO) just in case it satisfies the following axioms.

$$\bigcirc \varphi \vdash \bigcirc \varphi$$
 $\bigcirc \varphi \vdash \psi$
 Monotone

 $\bigcirc \varphi \vdash \bigcirc \varphi$
 $\bigcirc \varphi \vdash \bigcirc \psi$
 Monotone

 $\bigcirc \varphi \vdash \varphi$
 Deflationary
 $\bigcirc \varphi \vdash \bigcirc \psi$
 Idempotent

Call an operator $\boxdot: \mathcal{L}_{\mathsf{Imp}} \to \mathcal{L}_{\mathsf{Imp}}$ an *endomorphism-invariant interior operator* (EIEIO) just in case it satisfies the following axioms.

 $\frac{\varphi \vdash \psi}{\boxdot \varphi \vdash \boxdot \varphi} \operatorname{S/C} \qquad \qquad \frac{\varphi \vdash \psi}{\boxdot \varphi \vdash \circledcirc \psi} \operatorname{Monotone}$

 $\begin{array}{c} \hline & \varphi \vdash \varphi \end{array} \text{ Deflationary} & \hline & \varphi \vdash \bigcirc \varphi \end{array} \text{ Idempotent} \\ \hline & h: HC \longrightarrow HC \\ \hline & \exists x (\boxdot \varphi(x) \land h(x) = y) \vdash \boxdot (\exists x (\varphi(x) \land h(x) = y)) \end{array} \text{ FEI}$

In other words, an operator
is EIEIO just in case

- is a comonad (deflationary, idempotent, monotone);
- \bigcirc is *fully endomorphism invariant* for all $h: HC \rightarrow HC$, $\exists x (\boxdot \varphi(x) \land h(x) = y) \vdash \boxdot (\exists x (\varphi(x) \land h(x) = y)).$

$Ded_{G^i} S$ is pre-complete.

Lemma. ent_S is the greatest EIEIO suboperator of $\Box \circ \cos_S$. That is, ent_S $\leq \Box \circ \cos_S$ and for every $\odot : \operatorname{Sub}(UHC) \rightarrow \operatorname{Sub}(UHC)$ in EIEIO such that $\odot \leq \Box \circ \cos_S$, also $\odot \leq \operatorname{ent}_S$.

Lemma. ent_S is the greatest EIEIO suboperator of $\Box \circ \cos_S$. That is, ent_S $\leq \Box \circ \cos_S$ and for every $\odot: \operatorname{Sub}(UHC) \rightarrow \operatorname{Sub}(UHC)$ in EIEIO such that $\boxdot \leq \Box \circ \cos_S$, also $\boxdot \leq \operatorname{ent}_S$. Lemma. If S is deductively closed, then cons_S is an EIEIO. In other words, $\operatorname{cons}_{\operatorname{Ded}_{Ci}S}$ is an EIEIO.

$Ded_{G^i} S$ is pre-complete.

Lemma. If *S* is deductively closed, then $cons_S$ is an **EIEIO**. In other words, $cons_{Ded_{G^i}S}$ is an **EIEIO**. **Corollary.** $cons_{Ded_{G^i}S} = ent_S$.

Corollary. $\operatorname{cons}_{\operatorname{Ded}_{G^i}S} = \operatorname{ent}_S$.

Proof. $\operatorname{cons}_{\operatorname{Ded}_{G^i} S}$ is an **EIEIO** and a suboperator of $\Box \circ \operatorname{cons}_S$.

Corollary. $\operatorname{cons}_{\operatorname{Ded}_{G^i}S} = \operatorname{ent}_S$.

Proof. $\operatorname{cons}_{\operatorname{Ded}_{G^i} S}$ is an **EIEIO** and a suboperator of $\Box \circ \operatorname{cons}_S$. Hence, $\operatorname{cons}_{\operatorname{Ded}_{G^i} S} \leq \operatorname{ent}_S$. \gg

Corollary. $\operatorname{cons}_{\operatorname{Ded}_{G^i}S} = \operatorname{ent}_S$.

Proof. $\operatorname{cons}_{\operatorname{Ded}_{G^i}S}$ is an **EIEIO** and a suboperator of $\Box \circ \operatorname{cons}_S$. Hence, $\operatorname{cons}_{\operatorname{Ded}_{G^i}S} \leq \operatorname{ent}_S$. The other inclusion follows from the fact that G^i is sound.

$\mathsf{Ded}_{G^i} S$ is pre-complete.

Theorem. $\mathsf{Ded}_{G^i} S$ is pre-complete.

$Ded_{G^i} S$ is pre-complete.

Theorem. $\operatorname{Ded}_{G^i} S$ is pre-complete. *Proof.* It suffices to show that $\operatorname{Ded}_{G^i} S$ contains $\varphi \Rightarrow \operatorname{ent}_S \varphi$ for each $\varphi \in \mathcal{L}_{\operatorname{Coeq}}$.

>>>

Theorem. $\mathsf{Ded}_{G^i} S$ is pre-complete.

Proof. It suffices to show that $\mathsf{Ded}_{G^i} S$ contains $\varphi \Rightarrow \mathsf{ent}_S \varphi$ for each $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$. Thus, it suffices to show that $\mathsf{Ded}_{G^i} S$ contains each $\varphi \Rightarrow \mathsf{cons}_{\mathsf{Ded}_{G^i}} S \varphi$.

Theorem. $\mathsf{Ded}_{G^i} S$ is pre-complete.

Proof. It suffices to show that $\mathsf{Ded}_{G^i} S$ contains $\varphi \Rightarrow \mathsf{ent}_S \varphi$ for each $\varphi \in \mathcal{L}_{\mathsf{Coeq}}$. Thus, it suffices to show that $\mathsf{Ded}_{G^i} S$ contains each $\varphi \Rightarrow \mathsf{cons}_{\mathsf{Ded}_{G^i}} S \varphi$. This is clear, since

$$\operatorname{cons}_{\operatorname{Ded}_{G^i}S}\varphi = \bigwedge \{\psi \mid \varphi \Rightarrow \psi \in \operatorname{Ded}_{G^i}S\}$$

and $\operatorname{\mathsf{Ded}}_{G^i} S$ is closed under the rule $\frac{\{\varphi \Rightarrow \psi_i\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_i} \bigwedge -\mathrm{I}$

Theorem. $\operatorname{Ded}_{N^i} S$ is complete.

Theorem. $\operatorname{Ded}_{N^i} S$ is complete. *Proof.* N^i is the logic G^i with the additional rule

$$\frac{\varphi \Rightarrow \psi \quad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \operatorname{DSR}$$

Theorem. $\operatorname{Ded}_{N^i} S$ is complete.

Proof. N^i is the logic G^i with the additional rule

$$\frac{\varphi \Rightarrow \psi \qquad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \operatorname{DSR}$$

By the previous argument, we see that $\mathsf{Ded}_{N^i} S$ is pre-complete.

Theorem. $\operatorname{Ded}_{N^i} S$ is complete.

Proof. N^i is the logic G^i with the additional rule

$$\frac{\varphi \Rightarrow \psi \quad \psi \vdash \vartheta}{\varphi \Rightarrow \vartheta} \operatorname{DSR}$$

By the previous argument, we see that $\mathsf{Ded}_{N^i} S$ is pre-complete. Clearly, it is also upward-closed and hence complete.

Outline

III. $Ded_G S$ is pre-complete IV. $Ded_N S$ is complete V. An implicational language VI. An implicational calculus VII. $Ded_{G^i} S$ is pre-complete VIII. $\operatorname{Ded}_{N^i} S$ is complete

Outline

III. $Ded_G S$ is pre-complete IV. $Ded_N S$ is complete V. An implicational language VI. An implicational calculus VII. $Ded_{G^i} S$ is pre-complete VIII. $Ded_{N^i} S$ is complete

Some open questions

• What can we do to the damned semantic rules to make them more plausible as logical rules?

Some open questions

- What can we do to the damned semantic rules to make them more plausible as logical rules?
- Completeness proofs for related operators, including $\mathcal{H}\Sigma^+$.

Some open questions

- What can we do to the damned semantic rules to make them more plausible as logical rules?
- Completeness proofs for related operators, including $\mathcal{H}\Sigma^+$.
- An example of reasoning with one of these logics is that even plausible?