Simulations in Coalgebra

Bart Jacobs and Jesse Hughes {bart,jesseh}@cs.kun.nl.

University of Nijmegen

Simulations in Coalgebra – p.1/16

I. Simulations, bisimulations, two-way simulations

- I. Simulations, bisimulations, two-way simulations
- II. Orders on functors

- I. Simulations, bisimulations, two-way simulations
- II. Orders on functors
- III. Lax relation lifting

- I. Simulations, bisimulations, two-way simulations
- II. Orders on functors
- III. Lax relation lifting
- IV. Two-way simulations

- I. Simulations, bisimulations, two-way simulations
- II. Orders on functors
- III. Lax relation lifting
- IV. Two-way simulations
 - V. DPCO structure on final coalgebras

- I. Simulations, bisimulations, two-way simulations
- II. Orders on functors
- III. Lax relation lifting
- IV. Two-way simulations
 - V. DPCO structure on final coalgebras
- VI. Summary

Let R be a relation on coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$.

Let R be a relation on coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$.

R is a simulation iff, whenever aRb and $a \rightarrow a'$, there is $b \rightarrow b'$ where a'Rb'.

Let R be a relation on coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$.

R is a simulation iff, whenever aRb and $a \rightarrow a'$, there is $b \rightarrow b'$ where a'Rb'.

Similarity $a \lesssim b \iff \exists R . aRb \text{ and } R \text{ is a simulation.}$

Simulations in Coalgebra – p.3/16

Let R be a relation on coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$.

R is a simulation iff, whenever aRb and $a \rightarrow a'$, there is $b \rightarrow b'$ where a'Rb'.

Similarity	$a \lesssim b$	\Leftrightarrow	$\exists R . aRb \text{ and } R \text{ is a}$
			simulation.
Bisimilarity	$a \stackrel{\longrightarrow}{\longleftrightarrow} b$	\Leftrightarrow	$\exists R . aRb \text{ and } R, R^{\text{op}} \text{ are}$
			simulations

Let R be a relation on coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$.

R is a simulation iff, whenever aRb and $a \rightarrow a'$, there is $b \rightarrow b'$ where a'Rb'.

Similarity $a \lesssim b \iff \exists R . aRb$ and R is a
simulation.Bisimilarity $a \leftrightarrow b \iff \exists R . aRb$ and R, R^{op} are
simulationsTwo-way
similarity $a \approx b \iff a \lesssim b$ and $b \lesssim a$

Consider $FX = 1 + \mathbb{N} \times X$.

Final *F*-coalgebra: (possibly finite) sequences over \mathbb{N} .

Consider $FX = 1 + \mathbb{N} \times X$.

Final *F*-coalgebra: (possibly finite) sequences over \mathbb{N} .

"Standard" similarity $\sigma \lesssim_1 \tau \Leftrightarrow \sigma$ is a prefix of τ .

Simulations in Coalgebra – p.4/16

Consider $FX = 1 + \mathbb{N} \times X$.

Final *F*-coalgebra: (possibly finite) sequences over \mathbb{N} .

Another similarity $\sigma \lesssim_2 \tau \Leftrightarrow \operatorname{len}(\sigma) = \operatorname{len}(\tau) \text{ and for each } n < \operatorname{len}(\sigma),$ $\sigma(n) \leq \tau(n).$

 \sum

Simulations in Coalgebra – p.4/16

Consider $FX = 1 + \mathbb{N} \times X$.

Final *F*-coalgebra: (possibly finite) sequences over \mathbb{N} .

Another similarity $\sigma \lesssim_2 \tau \Leftrightarrow \operatorname{len}(\sigma) = \operatorname{len}(\tau) \text{ and for each } n < \operatorname{len}(\sigma),$ $\sigma(n) \leq \tau(n).$

|A| = |A| = |A| = |A| = |A| = |A|

Consider $FX = 1 + \mathbb{N} \times X$.

Final *F*-coalgebra: (possibly finite) sequences over \mathbb{N} .

Similarity via composition $\sigma(\leq_2 \circ \leq_1) \tau \Leftrightarrow \operatorname{len}(\sigma) \leq \operatorname{len}(\tau) \text{ and for all } n \leq \operatorname{len}(\sigma),$ $\sigma(n) \leq \tau(n).$

 \sum

Simulations in Coalgebra – p.4/16

Consider $FX = 1 + \mathbb{N} \times X$. Final *F*-coalgebra: (possibly finite) sequences over \mathbb{N} .

What structure suffices to describe these examples of similarity?

An *order* on a functor $F: \mathbf{Set} \to \mathbf{Set}$ is a functor $\subseteq: \mathbf{Set} \to \mathbf{PreOrd}$ such that this diagram commutes.

An *order* on a functor $F: \mathbf{Set} \to \mathbf{Set}$ is a functor $\subseteq: \mathbf{Set} \to \mathbf{PreOrd}$ such that this diagram commutes.

This means:

• For each set X, we have a preorder \sqsubseteq_X on FX;

An *order* on a functor $F: \mathbf{Set} \to \mathbf{Set}$ is a functor $\sqsubseteq: \mathbf{Set} \to \mathbf{PreOrd}$ such that this diagram commutes.

This means:

- For each set X, we have a preorder \sqsubseteq_X on FX;
- For each map $f: X \rightarrow Y$, the map $Ff: FX \rightarrow FY$ is monotone.

An *order* on a functor $F: \mathbf{Set} \to \mathbf{Set}$ is a functor $\subseteq: \mathbf{Set} \to \mathbf{PreOrd}$ such that this diagram commutes.

This means:

- For each set X, we have a preorder \sqsubseteq_X on FX;
- For each map $f: X \rightarrow Y$, the map $Ff: FX \rightarrow FY$ is monotone.

An order on F yields a notion of F-similarity.

Simulations in Coalgebra – p.5/16

A functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$ has a (canonical) associated relation lifting:

A functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$ has a (canonical) associated relation lifting:

This can be defined via image factorization:

A bisimulation over *F*-coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$ is a **Rel**(*F*)-coalgebra:

A bisimulation over *F*-coalgebras $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$ is a **Rel**(*F*)-coalgebra:

It is a relation R such that

$$aRb \Rightarrow \alpha(a) \operatorname{\mathbf{Rel}}(F)(R) \beta(b).$$

Simulations in Coalgebra – p.6/16

Simulations in Coalgebra – p.7/16

An order \sqsubseteq :Set \rightarrow PreOrd induces a *lax relation lifting* via composition.

An order \sqsubseteq :Set \rightarrow PreOrd induces a *lax relation lifting* via composition.

We write $x \operatorname{\mathbf{Rel}}_{\sqsubseteq}(F)(R) y$ just in case

 $x (\sqsubseteq \circ \operatorname{\mathbf{Rel}}(F)(R) \circ \sqsubseteq) y$

An order \sqsubseteq :Set \rightarrow PreOrd induces a *lax relation lifting* via composition.

We write $x \operatorname{Rel}_{\sqsubseteq}(F)(R) y$ just in case

 $x (\sqsubseteq \circ \operatorname{\mathbf{Rel}}(F)(R) \circ \sqsubseteq) y$ $\exists x', y' . x \sqsubseteq x' \operatorname{\mathbf{Rel}}(F)(R) y' \sqsubseteq y.$

A *simulation* on $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$ is a $\operatorname{Rel}_{\sqsubseteq}(F)$ -coalgebra over $\alpha \times \beta$.

A *simulation* on $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$ is a $\operatorname{Rel}_{\sqsubseteq}(F)$ -coalgebra over $\alpha \times \beta$.

It is a relation R on $A \times B$ such that

 $aRb \Rightarrow \exists x', y' \cdot \alpha(a) \sqsubseteq x' \operatorname{\mathbf{Rel}}(F)(R) y' \sqsubseteq \beta(b).$

Simulations in Coalgebra – p.8/16

A *simulation* on $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$ is a $\operatorname{Rel}_{\sqsubseteq}(F)$ -coalgebra over $\alpha \times \beta$.

This definition includes all of the common notions of coalgebraic simulation.

Simulations in Coalgebra – p.8/16

A *simulation* on $\langle A, \alpha \rangle$ and $\langle B, \beta \rangle$ is a $\operatorname{Rel}_{\sqsubseteq}(F)$ -coalgebra over $\alpha \times \beta$.

This definition includes all of the common notions of coalgebraic simulation.

For any pair of coalgebras, the greatest simulation \lesssim exists.

Consider $FX = 1 + \mathbb{N} \times X$.

Simulations in Coalgebra – p.9/16

Examples

Consider $FX = 1 + \mathbb{N} \times X$. Define $x \sqsubseteq_1 y \Leftrightarrow x = y$ or x = *.

Simulations in Coalgebra – p.9/16
Consider $FX = 1 + \mathbb{N} \times X$. Define $x \sqsubseteq_1 y \Leftrightarrow x = y$ or x = *. The greatest \sqsubseteq_1 -simulation is $\sigma \lesssim_1 \tau \Leftrightarrow \sigma$ is a prefix of τ .

Consider $FX = 1 + \mathbb{N} \times X$. Define $x \sqsubseteq_2 y \Leftrightarrow x = y = *$ or $\pi_1(x) \le \pi_1(y)$. $\{5\} \times X$ $\{4\} \times X$ $\{3\} \times X$ $\{2\} \times X$ {*} $\{1\} \times X$ $\{0\} \times X$

Consider $FX = 1 + \mathbb{N} \times X$. Define $x \sqsubseteq_2 y \Leftrightarrow x = y = * \text{ or } \pi_1(x) \le \pi_1(y)$. The greatest \sqsubseteq_2 -simulation is $\sigma \lesssim_2 \tau \Leftrightarrow \operatorname{len}(\sigma) = \operatorname{len}(\tau) \text{ and for each } n < \operatorname{len}(\sigma),$ $\sigma(n) \le \tau(n).$ $0 \longrightarrow 1 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 5 \longrightarrow \cdots$

 \sum

Consider $FX = 1 + \mathbb{N} \times X$. $x (\sqsubseteq_2 \circ \sqsubseteq_1) y \Leftrightarrow x = * \text{ or } x, y \in \mathbb{N} \times X \text{ and}$ $\pi_1(x) \leq \pi_1(y).$

 $\{4\} \times X$ $\{3\} \times X$ $\{2\} \times X$ $\{1\} \times X$ $\{0\} \times X$ $\{*\}$

Consider $FX = 1 + \mathbb{N} \times X$. $x (\sqsubseteq_2 \circ \sqsubseteq_1) y \Leftrightarrow x = * \text{ or } x, y \in \mathbb{N} \times X \text{ and}$ $\pi_1(x) \leq \pi_1(y).$

The greatest $\sqsubseteq_2 \circ \sqsubseteq_1$ -simulation is $\lesssim_2 \circ \lesssim_1$.

[Thijs 1996, Baltag 2000] Given a functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$, a *weak relator extending* Fis a functor $G: \mathbf{Rel} \rightarrow \mathbf{Rel}$ such that

• $=_{FX} \subseteq G(=_X)$

[Thijs 1996, Baltag 2000] Given a functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$, a *weak relator extending* Fis a functor $G: \mathbf{Rel} \rightarrow \mathbf{Rel}$ such that

• $=_{FX} \subseteq G(=_X)$

• $R \subseteq S \Rightarrow GR \subseteq GS$.

[Thijs 1996, Baltag 2000] Given a functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$, a *weak relator extending* Fis a functor $G: \mathbf{Rel} \rightarrow \mathbf{Rel}$ such that

- $=_{FX} \subseteq G(=_X)$
- $R \subseteq S \implies GR \subseteq GS$.
- $GR \circ GS = G(R \circ S)$

[Thijs 1996, Baltag 2000] Given a functor $F: \mathbf{Set} \rightarrow \mathbf{Set}$, a *weak relator extending* Fis a functor $G: \mathbf{Rel} \rightarrow \mathbf{Rel}$ such that

- $=_{FX} \subseteq G(=_X)$
- $R \subseteq S \implies GR \subseteq GS.$
- $GR \circ GS = G(R \circ S)$
- "functoriality"

Theorem (Thijs). Weak relators extending F are equivalent to lax relation liftings.

Theorem (Thijs). Weak relators extending F are equivalent to lax relation liftings.

Thus, the difference between the two approaches is largely conceptual...

Theorem (Thijs). Weak relators extending F are equivalent to lax relation liftings.

Thus, the difference between the two approaches is largely conceptual... but with some practical consequences.

Ordered functors • Given: \sqsubseteq and $\mathbf{Rel}(F)$

Weak relators • Given: relators (lax relation liftings)

Ordered functors • Given: \sqsubseteq and $\operatorname{Rel}(F)$

• Derived: lax relation lifting

Weak relators
Given: relators (lax relation liftings)

• Derived: \sqsubseteq and $\mathbf{Rel}(F)$

Ordered functors • Given: \sqsubseteq and $\operatorname{Rel}(F)$

- Derived: lax relation lifting
- Bisimulation is primitive

Weak relators • Given: relators (lax relation liftings)

• Derived: \sqsubseteq and $\mathbf{Rel}(F)$

• Bisimulation is special case

Ordered functors • Given: \sqsubseteq and $\operatorname{Rel}(F)$

- Derived: lax relation lifting
- Bisimulation is primitive
- Emphasizes order-theoretic structure

- Weak relators
 Given: relators (lax relation liftings)
- Derived: \sqsubseteq and $\mathbf{Rel}(F)$
- Bisimulation is special case

Recall: $a \leftrightarrow b \Leftrightarrow \exists$ bisimulation $R \cdot aRb$.

Recall: $a \leftrightarrow b \Leftrightarrow \exists R . aRb \text{ and } R, R^{\text{op}} \text{ are simulations}$

Recall: $a \leftrightarrow b \Leftrightarrow \exists R . aRb \text{ and } R, R^{\text{op}} \text{ are simulations}$ **Recall:** $a = b \Leftrightarrow a \leq b \text{ and } b \leq a.$

Recall: $a \leftrightarrow b \Leftrightarrow \exists R . aRb$ and R, R^{op} are simulations **Recall:** $a = b \Leftrightarrow \exists R, S . aRb, bSa$ and R, Sare simulations.

Recall: $a \leftrightarrow b \Leftrightarrow \exists R . aRb \text{ and } R, R^{\text{op}}$ are simulations **Recall:** $a \approx b \Leftrightarrow \exists R, S . aRb, bSa \text{ and } R, S$ are simulations.

Note: Clearly, if $x \leftrightarrow y$ then x = y.

Recall: $a \leftrightarrow b \Leftrightarrow \exists R . aRb \text{ and } R, R^{\text{op}} \text{ are simulations}$ **Recall:** $a \approx b \Leftrightarrow \exists R, S . aRb, bSa \text{ and } R, S$ are simulations.

Note: Clearly, if $x \leftrightarrow y$ then x = y. Question: if x = y then $x \leftarrow y$?

The condition is non-trivial.

A counterexample.

The condition is non-trivial.

 $1 \leq a$.

The condition is non-trivial.

 $a \lesssim 1.$

Theorem. Suppose that \sqsubseteq satisfies

 $\operatorname{\mathbf{Rel}}_{\sqsubseteq}(F)(R_1) \cap \operatorname{\mathbf{Rel}}_{\sqsubseteq^{\operatorname{op}}}(F)(R_2) \subseteq \operatorname{\mathbf{Rel}}(F)(R_1 \cap R_2).$

Then \eqsim coincides with \leq .

Theorem. Suppose that \sqsubseteq satisfies $\operatorname{\mathbf{Rel}}_{\sqsubseteq}(F)(R_1) \cap \operatorname{\mathbf{Rel}}_{\sqsubseteq^{\operatorname{op}}}(F)(R_2) \subseteq \operatorname{\mathbf{Rel}}(F)(R_1 \cap R_2).$ Then \eqsim coincides with \nleftrightarrow .

We don't know how to express

 $\operatorname{\mathbf{Rel}}_{\sqsubseteq}(F)(R_1) \cap \operatorname{\mathbf{Rel}}_{\sqsubseteq}^{\operatorname{op}}(F)(R_2) \subseteq \operatorname{\mathbf{Rel}}(F)(R_1 \cap R_2)$

in terms of relators.

Theorem. Suppose that
$$\sqsubseteq$$
 satisfies
 $\operatorname{\mathbf{Rel}}_{\sqsubseteq}(F)(R_1) \cap \operatorname{\mathbf{Rel}}_{\sqsubseteq^{\operatorname{op}}}(F)(R_2) \subseteq \operatorname{\mathbf{Rel}}(F)(R_1 \cap R_2).$

Then \eqsim coincides with \leftrightarrow .

We don't know how to express

 $\operatorname{\mathbf{Rel}}_{\sqsubseteq}(F)(R_1) \cap \operatorname{\mathbf{Rel}}_{\sqsubseteq} \operatorname{\mathbf{op}}(F)(R_2) \subseteq \operatorname{\mathbf{Rel}}(F)(R_1 \cap R_2)$ in terms of relators.

How to eliminate \Box^{op} ?

Let $F: \mathbf{Set} \rightarrow \mathbf{Set}$ and $\subseteq : \mathbf{Set} \rightarrow \mathbf{PreOrd}$ be given.

Let $\zeta: Z \to FZ$ be the final *F*-coalgebra and \lesssim its similarity order.

Let $F: \mathbf{Set} \rightarrow \mathbf{Set}$ and $\subseteq : \mathbf{Set} \rightarrow \mathbf{PreOrd}$ be given.

Let $\zeta: Z \rightarrow FZ$ be the final *F*-coalgebra and \lesssim its similarity order.

Question: When is \leq on Z a DCPO?

Let $F: \mathbf{Set} \rightarrow \mathbf{Set}$ and $\subseteq : \mathbf{Set} \rightarrow \mathbf{PreOrd}$ be given.

Let $\zeta: Z \rightarrow FZ$ be the final *F*-coalgebra and \lesssim its similarity order.

Question: When is \leq on Z a DCPO?

When does every directed subset of Z have a join?

Let \mathcal{D} : **PreOrd** \rightarrow **DCPO** be the left adjoint to **DCPO** \rightarrow **PreOrd**.

Let \mathcal{D} : **PreOrd** \rightarrow **DCPO** be the left adjoint to **DCPO** \rightarrow **PreOrd**.

 $\mathcal{D}(X) = \{ S \subseteq X \mid S \text{ is down-closed, directed} \}$

Let \mathcal{D} : **PreOrd** \rightarrow **DCPO** be the left adjoint to **DCPO** \rightarrow **PreOrd**.

 $\mathcal{D}(X) = \{ S \subseteq X \mid S \text{ is down-closed, directed} \}$

Fact: A preorder X is a DCPO iff the unit

$$\eta_X \colon X \longrightarrow \mathcal{D}X$$

$$x \longmapsto \downarrow x$$

has a left adjoint $\bigvee : \mathcal{D}X \rightarrow X$.

DCPOs continued

So, we want to define a left adjoint $\mathcal{D}Z \rightarrow Z$ to $z \mapsto \downarrow z$.

DCPOs continued

We can do this by defining $\mathcal{D}Z \rightarrow F\mathcal{D}Z$.

DCPOs continued

The map $\zeta: Z \rightarrow FZ$ is monotone, so we have $\mathcal{D}\zeta: \mathcal{D}Z \rightarrow \mathcal{D}FZ$.

DCPOs continued

We acquire $\mathcal{D}FZ \rightarrow F\mathcal{D}Z$ by imposing a distributive law.

We suppose that $F: \mathbf{Set} \to \mathbf{Set}$ is a functor with order \sqsubseteq with a natural transformation

$$\begin{array}{ccc}
\mathbf{PreOrd} \xrightarrow{\mathcal{D}} \mathbf{PreOrd} \\
\mathbf{Rel}_{\Box}(F) & & & & \\
\mathbf{Rel}_{\Box}(F) & & & & \\
\mathbf{PreOrd} \xrightarrow{\mathcal{D}} \mathbf{PreOrd}
\end{array}$$

We suppose that $F: \mathbf{Set} \rightarrow \mathbf{Set}$ is a functor with order \sqsubseteq with a natural transformation

$$\begin{array}{c} \mathbf{PreOrd} \xrightarrow{\mathcal{D}} \mathbf{PreOrd} \\ \mathbf{Rel}_{\Box}(F) & \swarrow \\ \mathbf{PreOrd} \xrightarrow{\mathcal{D}} \mathbf{PreOrd} \\ \end{array}$$

satisfying the diagrams

Simulations in Coalgebra – p.15/16

Theorem. In this situation, the final coalgebra $\langle Z, \zeta \rangle$ is a DCPO under the similarity order \lesssim .

Theorem. In this situation, the final coalgebra $\langle Z, \zeta \rangle$ is a DCPO under the similarity order \lesssim .

Any polynomial functor F with a "reasonable" order satisfies these conditions.

Theorem. In this situation, the final coalgebra $\langle Z, \zeta \rangle$ is a DCPO under the similarity order \lesssim .

Any polynomial functor F with a "reasonable" order satisfies these conditions.

The "reasonable" orders are defined inductively on the structure of F.

Theorem. In this situation, the final coalgebra $\langle Z, \zeta \rangle$ is a DCPO under the similarity order \lesssim .

Any polynomial functor F with a "reasonable" order satisfies these conditions.

The "reasonable" orders are defined inductively on the structure of F.

The distributive law $\tau: \mathcal{D}F \to F\mathcal{D}$ can also be constructed inductively on the structure of F.

• We take relation lifting and an order on F as given.

- We take relation lifting and an order on F as given.
- We derive lax relation lifting and a notion of simulation.

- We take relation lifting and an order on F as given.
- We derive lax relation lifting and a notion of simulation.
- We find this development more natural than taking lax relation lifting as primitive.

- We take relation lifting and an order on F as given.
- We derive lax relation lifting and a notion of simulation.
- We find this development more natural than taking lax relation lifting as primitive.
- We find a sufficient condition for $\underline{\leftrightarrow} = \overline{\neg}$.

- We take relation lifting and an order on F as given.
- We derive lax relation lifting and a notion of simulation.
- We find this development more natural than taking lax relation lifting as primitive.
- We find a sufficient condition for $\underline{\leftrightarrow} = \overline{\neg}$.
- A distributive law ensures that \leq on the final coalgebra is a DCPO.

- We take relation lifting and an order on F as given.
- We derive lax relation lifting and a notion of simulation.
- We find this development more natural than taking lax relation lifting as primitive.
- We find a sufficient condition for $\underline{\leftrightarrow} = \overline{\neg}$.
- A distributive law ensures that \lesssim on the final coalgebra is a DCPO.
- When is \leq an algebraic DCPO?