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Simulations, etc.
Let R be a relation on coalgebras 〈A, α〉 and 〈B, β〉.
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R is a simulation iff, whenever aRb and a //a′ , there is
b //b′ where a′Rb′.
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Simulations, etc.
Let R be a relation on coalgebras 〈A, α〉 and 〈B, β〉.

R is a simulation iff, whenever aRb and a //a′ , there is
b //b′ where a′Rb′.

Similarity a b ⇔ ∃R . aRb and R is a
simulation.

Bisimilarity
a ↔ b ⇔

∃R . aRb and R, Rop are
simulations

Two-way
similarity a ∼ b ⇔

a b and b a
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R is a simulation iff, whenever aRb and a //a′ , there is
b //b′ where a′Rb′.

Similarity a b ⇔ ∃R . aRb and R is a
simulation.

Bisimilarity a ↔ b ⇔ ∃R . aRb and R, Rop are
simulations

Two-way
similarity

a ∼ b ⇔ a b and b a
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Sequences
Consider FX = 1 + × X .

Final F -coalgebra: (possibly finite) sequences over .
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Sequences

1 // 1 // 2 // 3 // 5

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

Final F -coalgebra: (possibly finite) sequences over .

“Standard” similarity
σ 1 τ ⇔ σ is a prefix of τ.

Simulations in Coalgebra – p.4/16



Sequences

0 // 1 // 1 // 2 // 3 // 5 // . . .

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

Final F -coalgebra: (possibly finite) sequences over .

Another similarity
σ 2 τ ⇔ len(σ) = len(τ) and for each n < len(σ),

σ(n) ≤ τ(n).
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Sequences

0 // 1 // 1 // 2 // 3 // 5 // . . .

≤ ≤ ≤ ≤ ≤ ≤

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

Final F -coalgebra: (possibly finite) sequences over .

Another similarity
σ 2 τ ⇔ len(σ) = len(τ) and for each n < len(σ),

σ(n) ≤ τ(n).
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Sequences

0 // 1 // 1 // 2 // 3 // 5

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

Final F -coalgebra: (possibly finite) sequences over .

Similarity via composition
σ( 2◦ 1)τ ⇔ len(σ) ≤ len(τ) and for all n ≤ len(σ),

σ(n) ≤ τ(n).
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Sequences
Consider FX = 1 + × X .

Final F -coalgebra: (possibly finite) sequences over .

What structure suffices to describe these examples of
similarity?
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Our starting point: Orders on functors

An order on a functor F :Set //Set is a functor
v :Set //PreOrd such that this diagram commutes.

PreOrd

��

Set
F

//

v
66mmmmmmmmmmmmm
Set
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Our starting point: Orders on functors

An order on a functor F :Set //Set is a functor
v :Set //PreOrd such that this diagram commutes.

PreOrd

��

Set
F

//

v
66mmmmmmmmmmmmm
Set

This means:

• For each set X , we have a preorder vX on FX;
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Our starting point: Orders on functors

An order on a functor F :Set //Set is a functor
v :Set //PreOrd such that this diagram commutes.

PreOrd

��

Set
F

//

v
66mmmmmmmmmmmmm
Set

This means:

• For each set X , we have a preorder vX on FX;

• For each map f :X //Y , the map Ff :FX //FY is
monotone.
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Our starting point: Orders on functors

An order on a functor F :Set //Set is a functor
v :Set //PreOrd such that this diagram commutes.

PreOrd

��

Set
F

//

v
66mmmmmmmmmmmmm
Set

This means:

• For each set X , we have a preorder vX on FX;

• For each map f :X //Y , the map Ff :FX //FY is
monotone.

An order on F yields a notion of F -similarity.
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Excursion: bisimulations
A functor F :Set //Set has a (canonical) associated
relation lifting:

Rel
Rel(F )

//

��

Rel

��

Set × Set
F×F

// Set × Set
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Excursion: bisimulations
A functor F :Set //Set has a (canonical) associated
relation lifting:

Rel
Rel(F )

//

��

Rel

��

Set × Set
F×F

// Set × Set

This can be defined via image factorization:

FR
��

��

// // Rel(F )(R)
��

��

F (A × B)
〈Fπ1, Fπ2〉

// FA × FB
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Excursion: bisimulations
A bisimulation over F -coalgebras 〈A, α〉 and 〈B, β〉 is a
Rel(F )-coalgebra:

R //

��

��

Rel(F )(R)
��

��

A × B
α×β

// FA × FB
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Excursion: bisimulations
A bisimulation over F -coalgebras 〈A, α〉 and 〈B, β〉 is a
Rel(F )-coalgebra:

R //

��

��

Rel(F )(R)
��

��

A × B
α×β

// FA × FB

It is a relation R such that

aRb ⇒ α(a) Rel(F )(R) β(b).
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Lax relation liftings

Rel
Rel(F )(−)

//

��

Rel

��

Set × Set
F×F

// Set × Set

We write x Relv(F )(R) y just in case

x (v◦ Rel(F )(R) ◦v) y
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Lax relation liftings

Rel
v◦Rel(F )(−)◦v

//

��

Rel

��

Set × Set
F×F

// Set × Set

An order v :Set //PreOrd induces a lax relation lifting
via composition.

We write x Relv(F )(R) y just in case

x (v◦ Rel(F )(R) ◦v) y
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Lax relation liftings

Rel
v◦Rel(F )(−)◦v

//

��

Rel

��

Set × Set
F×F

// Set × Set

An order v :Set //PreOrd induces a lax relation lifting
via composition.

We write x Relv(F )(R) y just in case

x (v◦ Rel(F )(R) ◦v) y

∃x′, y′ . x v x′ Rel(F )(R) y′ v y.
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Simulations
A simulation on 〈A, α〉 and 〈B, β〉 is a
Relv(F )-coalgebra over α × β.

R //

��

��

Relv(F )(R)
��

��

A × B
α×β

// FA × FB
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Simulations
A simulation on 〈A, α〉 and 〈B, β〉 is a
Relv(F )-coalgebra over α × β.

R //

��

��

Relv(F )(R)
��

��

A × B
α×β

// FA × FB

It is a relation R on A × B such that

aRb ⇒ ∃x′, y′ . α(a) v x′ Rel(F )(R) y′ v β(b).
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Simulations
A simulation on 〈A, α〉 and 〈B, β〉 is a
Relv(F )-coalgebra over α × β.

R //

��

��

Relv(F )(R)
��

��

A × B
α×β

// FA × FB

This definition includes all of the common notions of
coalgebraic simulation.
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Simulations
A simulation on 〈A, α〉 and 〈B, β〉 is a
Relv(F )-coalgebra over α × β.

R //

��

��

Relv(F )(R)
��

��

A × B
α×β

// FA × FB

This definition includes all of the common notions of
coalgebraic simulation.

For any pair of coalgebras, the greatest simulation exists.
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Examples

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .
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Examples

. . . 〈2, x〉 〈17, y〉 〈37, x〉 〈4, y′〉 〈0, y〉 〈0, x〉 . . .

∗
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Consider FX = 1 + × X .

Define x v1 y ⇔ x = y or x = ∗.
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Examples

1 // 1 // 2 // 3 // 5

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

Define x v1 y ⇔ x = y or x = ∗.

The greatest v1-simulation is
σ 1 τ⇔ σ is a prefix of τ .
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Examples
...

{5} × X

OO

{4} × X

OO

{3} × X

OO

{2} × X

OO

{1} × X

OO

{∗}

{0} × X

OO

Consider FX = 1 + × X .

Define x v2 y ⇔ x = y = ∗ or π1(x) ≤ π1(y).
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Examples

0 // 1 // 1 // 2 // 3 // 5 // . . .

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

Define x v2 y ⇔ x = y = ∗ or π1(x) ≤ π1(y).

The greatest v2-simulation is
σ 2 τ ⇔ len(σ) = len(τ) and for each n < len(σ),

σ(n) ≤ τ(n).
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Examples
...

{4} × X

OO

{3} × X

OO

{2} × X

OO

{1} × X

OO

{0} × X

OO

{∗}

OO

Consider FX = 1 + × X .

x (v2◦v1) y ⇔ x = ∗ or x, y ∈ × X and
π1(x) ≤ π1(y).
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Examples

0 // 1 // 1 // 2 // 3 // 5

1 // 1 // 2 // 3 // 5 // 8 // . . .

Consider FX = 1 + × X .

x (v2◦v1) y ⇔ x = ∗ or x, y ∈ × X and
π1(x) ≤ π1(y).

The greatest v2◦v1-simulation is 2◦ 1.
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Related work: weak relators
[Thijs 1996, Baltag 2000]
Given a functor F :Set //Set, a weak relator extending F

is a functor G :Rel //Rel such that

Rel

��

G // Rel

��

Set × Set
F×F

// Set × Set

• =FX⊆ G(=X)
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Related work: weak relators
[Thijs 1996, Baltag 2000]
Given a functor F :Set //Set, a weak relator extending F

is a functor G :Rel //Rel such that

Rel

��

G // Rel

��

Set × Set
F×F

// Set × Set

• =FX⊆ G(=X)

• R ⊆ S ⇒ GR ⊆ GS.
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Related work: weak relators
[Thijs 1996, Baltag 2000]
Given a functor F :Set //Set, a weak relator extending F

is a functor G :Rel //Rel such that

Rel

��

G // Rel

��

Set × Set
F×F

// Set × Set

• =FX⊆ G(=X)

• R ⊆ S ⇒ GR ⊆ GS.

• GR ◦ GS = G(R ◦ S)
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Related work: weak relators
[Thijs 1996, Baltag 2000]
Given a functor F :Set //Set, a weak relator extending F

is a functor G :Rel //Rel such that

Rel

��

G // Rel

��

Set × Set
F×F

// Set × Set

• =FX⊆ G(=X)

• R ⊆ S ⇒ GR ⊆ GS.

• GR ◦ GS = G(R ◦ S)

• “functoriality”
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Related work: weak relators

Theorem (Thijs). Weak relators extending F are
equivalent to lax relation liftings.
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Related work: weak relators

Theorem (Thijs). Weak relators extending F are
equivalent to lax relation liftings.

Thus, the difference between the two approaches is largely
conceptual. . .
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Related work: weak relators

Theorem (Thijs). Weak relators extending F are
equivalent to lax relation liftings.

Thus, the difference between the two approaches is largely
conceptual. . . but with some practical consequences.
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Conceptual differences

Ordered functors Weak relators
• Given: v and Rel(F ) • Given: relators (lax

relation liftings)

• Derived: lax relation
lifting

• Derived: v and Rel(F )

• Bisimulation is primitive • Bisimulation is special
case
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• Bisimulation is primitive • Bisimulation is special
case
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• Bisimulation is primitive • Bisimulation is special
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Conceptual differences

Ordered functors Weak relators
• Given: v and Rel(F ) • Given: relators (lax

relation liftings)
• Derived: lax relation
lifting

• Derived: v and Rel(F )

• Bisimulation is primitive • Bisimulation is special
case

• Emphasizes
order-theoretic structure
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Two-way similarity
Recall: a ↔ b ⇔ ∃ bisimulation R . aRb.
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Two-way similarity
Recall: a ↔ b ⇔ ∃R . aRb and R, Rop are simulations
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Recall: a ∼ b ⇔ a b and b a.
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Two-way similarity
Recall: a ↔ b ⇔ ∃R . aRb and R, Rop are simulations

Recall: a ∼ b ⇔ ∃R, S . aRb, bSa and R, S
are simulations.
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Two-way similarity
Recall: a ↔ b ⇔ ∃R . aRb and R, Rop are simulations

Recall: a ∼ b ⇔ ∃R, S . aRb, bSa and R, S
are simulations.

Note: Clearly, if x ↔ y then x ∼ y.
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Two-way similarity
Recall: a ↔ b ⇔ ∃R . aRb and R, Rop are simulations

Recall: a ∼ b ⇔ ∃R, S . aRb, bSa and R, S
are simulations.

Note: Clearly, if x ↔ y then x ∼ y.

Question: if x ∼ y then x ↔ y?
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Two-way similarity

1
��

<<
<<

����
��

a
��

2
��

3 b
��

4 c

A counterexample.

The condition is non-trivial.
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Two-way similarity

1
��

<<
<<

����
��

**e _ Y
a
��

2
��

66S W [ _ c g k3
))h _ V
b
��

4 33Y [ ] _ a c e c

1 a.

The condition is non-trivial.
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Two-way similarity

1
��

<<
<<

����
��

a
��

tt Y_e

2
��

3 b
��

hh kgc_[WS

4 ckk eca_][Y

a 1.

The condition is non-trivial.
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Two-way similarity

Theorem. Suppose that v satisfies

Relv(F )(R1) ∩ Relvop(F )(R2) ⊆ Rel(F )(R1 ∩ R2).

Then ∼ coincides with ↔.
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Two-way similarity

Theorem. Suppose that v satisfies

Relv(F )(R1) ∩ Relvop(F )(R2) ⊆ Rel(F )(R1 ∩ R2).

Then ∼ coincides with ↔.

We don’t know how to express

Relv(F )(R1) ∩ Relvop(F )(R2) ⊆ Rel(F )(R1 ∩ R2)

in terms of relators.
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Two-way similarity

Theorem. Suppose that v satisfies

Relv(F )(R1) ∩ Relvop(F )(R2) ⊆ Rel(F )(R1 ∩ R2).

Then ∼ coincides with ↔.

We don’t know how to express

Relv(F )(R1) ∩ Relvop(F )(R2) ⊆ Rel(F )(R1 ∩ R2)

in terms of relators.

How to eliminate vop?
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DCPOs
Let F :Set //Set and v :Set //PreOrd be given.

Let ζ :Z //FZ be the final F -coalgebra and its similarity
order.
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DCPOs
Let F :Set //Set and v :Set //PreOrd be given.

Let ζ :Z //FZ be the final F -coalgebra and its similarity
order.

Question: When is on Z a DCPO?
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DCPOs
Let F :Set //Set and v :Set //PreOrd be given.

Let ζ :Z //FZ be the final F -coalgebra and its similarity
order.

Question: When is on Z a DCPO?

When does every directed subset of Z have a join?
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DCPOs
Let D :PreOrd //DCPO be the left adjoint to
DCPO //PreOrd .
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DCPOs
Let D :PreOrd //DCPO be the left adjoint to
DCPO //PreOrd .

D(X) = {S ⊆ X | S is down-closed, directed}
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DCPOs
Let D :PreOrd //DCPO be the left adjoint to
DCPO //PreOrd .

D(X) = {S ⊆ X | S is down-closed, directed}

Fact: A preorder X is a DCPO iff the unit

ηX : X // DX

x � // ↓ x

has a left adjoint
∨

:DX //X .
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DCPOs continued

FZ

DZ //_________ Z

ζ

OO

So, we want to define a left adjoint DZ //Z to z 7→↓ z.
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DCPOs continued

FDZ //FZ

DZ //

OO�
�
�
�
�
�

Z

ζ

OO

We can do this by defining DZ //FDZ .
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DCPOs continued

FDZ //FZ

DFZ

DZ //

OO�
�
�

Z

ζ

OO

The map ζ :Z //FZ is monotone, so we have
Dζ :DZ //DFZ .

Simulations in Coalgebra – p.14/16



DCPOs continued

FDZ //FZ

DFZ

OO�
�
�

DZ //

OO

Z

ζ

OO

We acquire DFZ //FDZ by imposing a distributive law.
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Distributive law
We suppose that F :Set //Set is a functor with order v
with a natural transformation

PreOrd
D //

Relv(F )
��

PreOrd
Relv(F )

��

PreOrd D
//

τ

19kkkkkk
kkkkkk

PreOrd
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Distributive law
We suppose that F :Set //Set is a functor with order v
with a natural transformation

PreOrd
D //

Relv(F )
��

PreOrd
Relv(F )

��

PreOrd D
//

τ

19kkkkkk
kkkkkk

PreOrd

satisfying the diagrams

F
ηF

+3

Fη
�%

CC
CC

CC
CC

CC
CC

CC
CC

DF

τ
��

D2F
µF

��

Dτ
+3 DFD

τD
+3 FD2

Fµ
��

FD DF τ
+3 FD
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Distributive law

Theorem. In this situation, the final coalgebra 〈Z, ζ〉
is a DCPO under the similarity order .
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Distributive law

Theorem. In this situation, the final coalgebra 〈Z, ζ〉
is a DCPO under the similarity order .

Any polynomial functor F with a “reasonable” order
satisfies these conditions.
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Distributive law

Theorem. In this situation, the final coalgebra 〈Z, ζ〉
is a DCPO under the similarity order .

Any polynomial functor F with a “reasonable” order
satisfies these conditions.

The “reasonable” orders are defined inductively on the
structure of F .
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Distributive law

Theorem. In this situation, the final coalgebra 〈Z, ζ〉
is a DCPO under the similarity order .

Any polynomial functor F with a “reasonable” order
satisfies these conditions.

The “reasonable” orders are defined inductively on the
structure of F .

The distributive law τ :DF //FD can also be constructed
inductively on the structure of F .
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Concluding remarks
• We take relation lifting and an order on F as given.

• We derive lax relation lifting and a notion of
simulation.

• We find this development more natural than taking lax
relation lifting as primitive.

• We find a sufficient condition for ↔ = ∼.

• A distributive law ensures that on the final
coalgebra is a DCPO.

• When is an algebraic DCPO?
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