Simulations in Coalgebra

Bart Jacobs and Jesse Hughes
{bart,jesseh } Qcs.kun.nl.

University of Nijmegen

Simulations in Coalgebra — p.1/16



Outline

|. Simulations, bisimulations, two-way simulations

Simulations in Coalgebra — p.2/16



Outline

|. Simulations, bisimulations, two-way simulations
[1. Orders on functors

Simulations in Coalgebra — p.2/16



Outline

|. Simulations, bisimulations, two-way simulations
[1. Orders on functors
[11. Lax relation litting

Simulations in Coalgebra — p.2/16



Outline

|. Simulations, bisimulations, two-way simulations
[1. Orders on functors
[11. Lax relation litting
V. Two-way simulations

Simulations in Coalgebra — p.2/16



Outline

|. Simulations, bisimulations, two-way simulations
[1. Orders on functors
[1l. Lax relation lifting
V. Two-way simulations
V. DPCO structure on final coalgebras

Simulations in Coalgebra — p.2/16



Outline

|. Simulations, bisimulations, two-way simulations
[1. Orders on functors
[1l. Lax relation lifting
V. Two-way simulations
V. DPCO structure on final coalgebras
VI. Summary

Simulations in Coalgebra — p.2/16



Simulations, etc.

Let R be arelation on coalgebras (A, o) and (B, 3).



Simulations, etc.

Let R be arelation on coalgebras (A, o) and (B, 3).

R 1s a simulation iff, whenever a Rb and a—a’, there is
b—b" where o’ RV’ .

Simulations in Coalgebra — p.3/16



Simulations, etc.

Let R be arelation on coalgebras (A, o) and (B, 3).

R 1s a simulation iff, whenever a Rb and a—a’, there is
b—b" where o’ RV’ .

Similarity a<b < dR.aRband Risa
simulation.

Simulations in Coalgebra — p.3/16



Simulations, etc.
Let R be arelation on coalgebras (A, o) and (B, 3).

R 1s a simulation iff, whenever a Rb and a—a’, there is
b—b" where o’ RV’ .

Similarity a<b < dR.aRband Risa
simulation.

Bisimilarity a< b < dR.aRband R, R°P are
simulations

Simulations in Coalgebra — p.3/16



Simulations, etc.

Let R be arelation on coalgebras (A, o) and (B, 3).

R 1s a simulation iff, whenever a Rb and a—a’, there is
b—b" where o’ RV’ .

Similarity a<b < dR.aRband Risa

simulation.

Bisimilarity a< b < dR.aRband R, R°P are
simulations

Two-way a~b < asbandb < a

similarity
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Seguences

Consider X =1+ N x X.
Final £'-coalgebra: (possibly finite) sequences over N.
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Seguences

Consider X =14+ N x X,
Final £'-coalgebra: (possibly finite) sequences over N.

“Standard” similarity
o <17« olsaprefix of 7.

1 @ 5
S0 0 @ 58,
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Consider F X =1+ N x X,
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Seguences

Consider F X =1+ N x X,
Final £'-coalgebra: (possibly finite) sequences over N.

Similarity via composition
0(<90<1)7 < len(o) < len(7) and for all n < len(o),

og(n) < 7(n).

0 60 0 @ 0 0
S0 0 @ 58,
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Seguences

Consider X =1+ N x X.
Final £'-coalgebra: (possibly finite) sequences over N.

'What structure suffices to describe these examples of
similarity?
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Our starting point: Orderson functors

An order on a functor F':Set—Set is a functor
C :Set—PreOrd such that this diagram commutes.

PreOrd

|

= > Set
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Our starting point: Orderson functors

An order on a functor F':Set—Set is a functor
C :Set—PreOrd such that this diagram commutes.

PreOrd

|

= > Set

This means:
For each set X', we have a preorder C x on F' X,

Foreachmap f: X—Y ,themap F'f:FX—FY Is
monotone.

An order on F' yields a notion of £'-similarity.
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Excursion: bissmulations

A functor I':Set—Set has a (canonical) associated
relation lifting:

Rel(F)
Rfl >Rfl
Set X Set »Set X Set

FxF
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Excursion: bissmulations

A functor I':Set—Set has a (canonical) associated
relation lifting:

Rel(F)

Rfl >Rfl
Set X Set o »Set X Set

This can be defined via image factorization:

FR > Rel(F)(R)
F(A x B) - FA >I< FB

<F7T17 F7T2> Simulations in Coalgebra — p.6/16



Excursion: bissmulations

A bisimulation over F'-coalgebras (A, o) and (B, 3) is a
Rel( F')-coalgebra:

R > Rel(F) (R)

I [

AXx B »F'A x F'B
X 3
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Excursion: bissmulations

A bisimulation over F'-coalgebras (A, o) and (B, 3) is a
Rel( F')-coalgebra:

R > Rel(F) (R)

I [

AXx B »F'A x F'B
X3

0

It 1S a relation R such that

aRb = «a(a) Rel(F)(R) B(b).



L ax relation liftings

Rfl Rel(F)(—) > Rfl
Set X Set »Set X Set

FxF
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L ax relation liftings

An order C:Set—PreOrd induces a lax relation lifting

via composition.
CoRel(F)(—)oC
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Set X Set »Set X Set
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L ax relation liftings

An order C:Set—PreOrd induces a lax relation lifting

via composition.
CoRel(F)(—)oC

Rfl — >Rfl
Set X Set oy »Set X Set

We write x Rel-(F)(R) y just in case

r (Co Rel(F)(R) oC) y
2,y .2 C 2’ Rel(F)(R) ¢y C y.
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Simulations

A simulationon (A, «) and (B, () is a
Rel-(F')-coalgebra over a x S.

R >RelE(F) (R)

I [

AXx B 5>FA><FB

QX
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Simulations

A simulationon (A, «) and (B, () is a
Rel-(F')-coalgebra over a x S.

R >Rel;(F) (R)

I [

AXx B ﬁ>FA><FB

QX
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Simulations

A simulationon (A, «) and (B, () is a
Rel-(F')-coalgebra over a x S.

R 'Relc (F)(R)

I [

AXx B ﬁ>FA><FB

QX

This definition includes all of the common notions of
coalgebraic simulation.

For any pair of coalgebras, the greatest simulation < exists.
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Examples

Consider FX =1+ N x X.

90 0 0 0 -0 =
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Examples

Consider FX =1+ N x X,
Definex &; y < x = y Or x = .

The greatest C=;-simulation Is
o <1 7& o Is aprefix of 7.

1 @ 5
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Examples

Consider FX =1+ N x X.

Definez Coy<=z =y =x0rm(x) < m(y).

&

{5} x X
I
{4} x X
I
{3} x X
I
{2} x X
]
{1} x X

,
{0} x X



Examples

Consider X =1+ N x X.
Definex Cy y < x =y =x0r my(x) < m(y).

The greatest C,-simulation Is
o <y 7 < len(o) = len(7) and for each n < len(o),

g(n) < 71(n).

0 60 0 @ 0 0
S0 0 @ 58,
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Examples

Consider F X =1+ N x X.
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Examples

Consider F X =1+ N x X.

r (Cooly) y < x=x*x0rx,y € Nx X and
mi(x) < m(y).

The greatest CooC-simulation Is <,0<;.

0 60 0 @ 0 0
S0 0 6 58,
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Related work: weak relators

[Thijs 1996, Baltag 2000]
Given a functor F':Set—Set, a weak relator extending F’

IS a functor G:Rel—Rel such that

Rfl = >Rfl
Set X Set oy »Set X Set

=rxC G(=x)
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Related work: weak relators

[Thijs 1996, Baltag 2000]
Given a functor F':Set—Set, a weak relator extending F’

IS a functor G:Rel—Rel such that

G

Rfl >Rfl
Set X Set oy »Set X Set
=rxC G(=x)

RCS = GRCCGS.
GRoGS=G(Ro)S)
“functoriality”
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Related work: weak relators

Theorem (Thijs). Weak relators extending I are
equivalent to lax relation liftings.
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Related work: weak relators

Theorem (Thijs). Weak relators extending I are
equivalent to lax relation liftings.

Thus, the difference between the two approaches is largely
conceptual. . .
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Related work: weak relators

Theorem (Thijs). Weak relators extending I are
equivalent to lax relation liftings.

Thus, the difference between the two approaches is largely
conceptual. .. but with some practical conseguences.
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Conceptual differences

Ordered functors Weak relators

Given: C and Rel(F') Given: relators (lax
relation liftings)
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Conceptual differences

Ordered functors Weak relators
Given: C and Rel(F) Given: relators (lax
relation liftings)
Derived: lax relation Derived: C and Rel(F)

lifting
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Conceptual differences

Ordered functors
Given: C and Rel(F))

Derived: lax relation
lifting
Bisimulation Is primitive

Weak relators

Given: relators (lax
relation liftings)

Derived: C and Rel(F)

Bisimulation Is special
case
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Conceptual differences

Ordered functors
Given: C and Rel(F))

Derived: lax relation
lifting
Bisimulation is primitive

Emphasizes
order-theoretic structure

Weak relators

Given: relators (lax
relation liftings)

Derived: C and Rel(F)

Bisimulation is special
case
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Recall: a <« b < dbisimulation R . aRb.
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Recall: a <= b« dR.aRband R, R°P are simulations

Recall: a =< b< dR, S'.aRb, bSa and R, S
are simulations.
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Two-way similarity
Recall: a < b« dR.aRband R, R°° are simulations

Recall: a = b« dR, S.aRb, bSa and R, S
are simulations.

Note: Clearly, iIf x <= y then z =~ v.

Simulations in Coalgebra — p.12/16



Two-way similarity

Recall: a < b« dR.aRband R, R°° are simulations

Recall: a = b« dR, S.aRb, bSa and R, S
are simulations.

Note: Clearly, if x < y then z = v.

Question: If x = y then z < y?
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Two-way similarity
The condition 1s non-trivial.

1
N

2 3
!
4

NS

A counterexample.
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Two-way similarity
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Two-way similarity

The condition 1s non-trivial.

1 a
N l
2. 3 b
L=
4«  _ _cC

a < 1.
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Two-way similarity

‘Theorem. Suppose that C satisfies
RelE(F) (Rl) M Relgop(F) (Rz) Q RGI(F) (Rl M RQ)

Then = coincides with <.
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Two-way similarity

‘Theorem. Suppose that C satisfies
RelE(F) (Rl) M Relgop(F) (Rz) Q Rel(F) (Rl M RQ)

Then = coincides with <.

We don’t know how to express
Rel;(F) (Rl) M Relgop(F) (Rz) g Rel(F) (Rl M RQ)

In terms of relators.
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Two-way similarity

‘Theorem. Suppose that C satisfies
RelE(F) (Rl) M Relgop(F) (Rz) Q Rel(F) (Rl M RQ)

Then = coincides with <.

We don’t know how to express
Rel;(F) (Rl) M Relgop(F) (Rz) g Rel(F) (Rl M RQ)
In terms of relators.

How to eliminate C_°P?
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DCPOs

Let /':Set—Set and C:Set—PreOrd be given.

Let (: Z—FZ be the final F'-coalgebra and < its similarity
order.
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DCPOs

Let /':Set—Set and C:Set—PreOrd be given.

Let (: Z—FZ be the final F'-coalgebra and < its similarity
order.

Question: When is < on Z a DCPO?

When does every directed subset of Z have a join?
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DCPOs

Let D:PreOrd—DCPO be the left adjoint to
DCPO—PreOrd.
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DCPOs

Let D:PreOrd—DCPO be the left adjoint to
DCPO—PreOrd.

D(X)={S C X | Sis down-closed, directed}
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DCPOs

Let D:PreOrd—DCPO be the left adjoint to
DCPO—PreOrd.

D(X) =45 C X | S is down-closed, directed}

Fact: A preorder X Is a DCPO iff the unit

Nx: X s DX

T yl @

has a left adjoint \/: DX — X .
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DCPQOs continued

So, we want to define a left adjoint D/ —7 to z —| z.
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DCPQOs continued

We can do this by defining D/ —FD 2.

FDZ FZ
|
: ¢
|
D7 7
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DCPQOs continued

The map ¢: Z—FZ 1s monotone, so we have
D(.-DZ—DFZ.

FDZ VA

DEZ ¢

Dz '/
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DCPQOs continued

We acquire DF'Z— F'DZ by imposing a distributive law.

FDZ FZ
|
DFZ ¢

Dz '/
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Distributive law

We suppose that F':Set—Set Is a functor with order C
with a natural transformation

PreOrd —— PreOrd
RelE(F)l = lRel;(F)
PreOrd — PreOrd
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Distributive law

We suppose that F':Set—Set Is a functor with order C
with a natural transformation

PreOrd —— PreOrd
RelE(F)l = lRel;(F)
PreOrd — PreOrd

satisfying the diagrams

F=2DF D2F 25 DEFD 22> P2

k “T e |Fo

FD DF - - FD
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Distributive law

' Theorem. In this situation, the final coalgebra (Z, ()
is a DCPO under the similarity order <.
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Any polynomial functor £ with a “reasonable” order
satisfies these conditions.
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structure of F.
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Distributive law

' Theorem. In this situation, the final coalgebra (Z, ()
is a DCPO under the similarity order <.

Any polynomial functor £ with a “reasonable” order
satisfies these conditions.

The “reasonable” orders are defined inductively on the
structure of F'.

The distributive law 7: DF— FD can also be constructed
Inductively on the structure of F'.
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Concluding remarks

We take relation lifting and an order on £’ as given.
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Concluding remarks

We take relation lifting and an order on £ as given.

We derive lax relation lifting and a notion of
simulation.

We find this development more natural than taking lax
relation lifting as primitive.

We find a sufficient condition for < = ~.

A distributive law ensures that < on the final
coalgebra is a DCPO.
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Concluding remarks

We take relation lifting and an order on £ as given.

We derive lax relation lifting and a notion of
simulation.

We find this development more natural than taking lax
relation lifting as primitive.

We find a sufficient condition for < = ~.

A distributive law ensures that < on the final
coalgebra is a DCPO.

When is < an algebraic DCPO?
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