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Coalgebras

Given a functor I':C—C, a I'-coalgebra Is a pair

(C, ),

where C' € Cand v:C'—=I'C.
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Coalgebras

Given a functor I':C—C, a I'-coalgebra Is a pair

(C, ),

where C' € C and v:C'—=I'C'. AT'-morphism is a
commutative square, as In

ro—-Lrp

ol

O—f>D
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Coalgebras

Given a functor I':C—C, a I'-coalgebra is a pair

(C, ),

where C' € C and v:C'—=I'C'. AT'-morphism is a
commutative square, as In

ro—-Lrp

ol

O—f>D

The category of I'-coalgebras and their homomorphisms is
denoted Cr.
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Factorization systems

A factorization system for C consists of two collections of
arrows, H and S, satisfying the following conditions.
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Factorization systems

A factorization system for C consists of two collections of
arrows, ‘H and S, satisfying the following conditions.

Every isomorphism is in H and S;
‘H and S are closed under composition;

'H and S satisfy the diagonal fill-in property , namely,
for every commutative square

where e € 'H and m € S, there Is a unique arrow f, as
shown, making each triangle commute ;
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Factorization systems

A factorization system for C consists of two collections of
arrows, ‘H and S, satisfying the following conditions.

Every isomorphism is in H and S;
‘H and S are closed under composition;
‘H and S satisfy the diagonal fill-in property;

every arrow f factorsas f = m o e, where e € ‘H and
m € S;
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Factorization systems

every arrow f factorsas f = m o e, where e € ‘'H and
m € S,

/If C has a factorization system, then any arrow f: A—B
can be factored uniquely up to isomorphism thus.
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Factorization systems

every arrow f factorsas f = m o e, where e € ‘'H and
m € S,

For each C & C, define

Sub(C) = {j € 8§ | cod(j) = C}/ = .
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Factorization systems

every arrow f factorsas f = m o e, where e € ‘'H and
m € S,

For each C & C, define

Sub(C) = {j € 8§ | cod(j) = C}/ = .

C is S-well-powered if, for every C' € C, Sub(C) is a set.
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Factorization systems

every arrow f factorsas f = m o e, where e € ‘H and
m e S;

For each C' € C, define

Sub(C) ={j€S8|cod(j)=C}/=.
Each h:C—D induces a morphism 3, :Sub(C')— Sub(D)
by 3,(A-~C) = Im(i o h).

A—=J,A

N

CTD
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Factorization systems for coalgebras

Let (H{, S) be a factorization system and suppose that
[':C—C preserves S-morphisms (i.e., if: € S, then
[veS).
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Factorization systems for coalgebras

Let (H{, S) be a factorization system and suppose that
[':C—C preserves S-morphisms.

Then the pair (U~1(H), U~!(S)) form a factorization
system for Cr.
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Factorization systems for coalgebras

Let (H{, S) be a factorization system and suppose that
[':C—C preserves S-morphisms.

Then the pair (U~1(H), U~!(S)) form a factorization

system for Cr.
In other words, every I'-homomorphism

f: (A, a)—(B, [3) factors uniquely as in

n A

im(f)

where p and ¢ are I'-homomorphismes.
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Cofree coalgebras

Let (D, &) be given, together with a C-coloring e¢: D—~C

of D.
We say that (D, ) is cofree over C just in case, for every

coalgebra (A, o) and every coloring p: A—C', there is a
unique homomorphism p: (A, a)—(D, 9) such that the
diagram below commutes.

(D, 0)
A
C——A (A, a)
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Cofree coalgebras

Let (D, &) be given, together with a C-coloring e¢: D—~C
of D.

D (D, 6)

b b

C?A <A7 CE>

For any coloring p: A—C', there i1s a I'-homomorphism
p: (A, a)—(D, ) “consistent” with p.
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Cofree coalgebras

Let (D, &) be given, together with a C-coloring e¢: D—~C
of D.

D (D, 9)
A
C——A (A, a)

If, for every object C' € C, there is a cofree (D, ¢§) over
C, then we have an adjunction

U
Cr—_ L —C.

H

A complete deductive calculus for (implications of) coequations — p.6/30



S-1njectives

An object C' € C 1s S-injective If, forall j: A—=B In S, and
all f:A—C, there is a (not necessarily unigue) extension
g : B—C making the diagram below commute.

B g C

7

A
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S-1njectives

An object C' € C 1s S-injective If, forall j: A—=B In S, and
all f:A—C, there is a (not necessarily unigue) extension
g : B—C making the diagram below commute.

B g C

7

A

C has enough S-injectives Iff for every A € C, there iIs an
S-injective C' € C and a S-morphism A—C..
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S-1njectives

Theorem. If U:Cr—C has a right adjoint H and C

has enough S-injectives, then Cr has enough
U~'S-injectives.
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S-1njectives
Theorem. If U:Cr—C has a right adjoint H and C has enough
S-injectives, then Cr has enough U~1S-injectives.

Proof. Let (A, a) be given and A < C', where C is S-injective.
Then (A, o) < HC. It suffices to show HC' is U~ 'S-injective.
=
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S-1njectives
Theorem. If U:Cr—C has a right adjoint H and C has enough
S-injectives, then Cr has enough U~1S-injectives.

Proof. Let (A, a) be given and A < C', where C is S-injective.
Then (A, o) < HC. It suffices to show HC' is U~ 'S-injective.

Let j:(B, B)>(D, §) and f:(B, 8)—HC be given. >
(D, 9) HC
(

A

B, B)
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S-1njectives
Theorem. If U:Cr—C has a right adjoint H and C has enough
S-injectives, then Cr has enough U~1S-injectives.

Proof. Let (A, a) be given and A < C', where C is S-injective.
Then (A, o) < HC. It suffices to show HC' is U~ 'S-injective.
Let j: (B, 8)>=(D, §) and f:(B, §)—=HC be given. >

| L

(D, 0) HC D C
(B, B) B

A complete deductive calculus for (implications of) coequations — p.7/30



S-1njectives
Theorem. If U:Cr—C has a right adjoint H and C has enough
S-injectives, then Cr has enough U~1S-injectives.

Proof. Let (A, a) be given and A < C', where C is S-injective.
Then (A, o) < HC. It suffices to show HC' is U~ 'S-injective.

Let j: (B, 8)>=>(D, ¢) and f:(B, §)—=HC be given. By the
injectivity ot C', we get a map D—C as shown ... >
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S-1njectives
Theorem. If U:Cr—C has a right adjoint H and C has enough
S-injectives, then Cr has enough U~1S-injectives.

Proof. Let (A, a) be given and A < C', where C is S-injective.
Then (A, o) < HC. It suffices to show HC' is U~ 'S-injective.
Let j: (B, 8)>=>(D, ¢) and f:(B, §)—=HC be given. By the
injectivity of C', we get a map D—C as shown and hence, by

adjoint transposition, a homomorphism (D, §)—HC'. []
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About S-meets

Recall that Sub(C') denotes the poset of isomorphism
classes of S-morphisms into C.

In any factorization system (H, S), the S-morphisms are
stable under pullbacks.

heA— A

|

BTC

Thus, 1If C has pullbacks of S-morphisms, then each
h: B—C' induces a functor 2*:Sub(C')— Sub(B).
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About S-meets

In any factorization system (H, S), the S-morphisms are
stable under pullbacks. This gives one a notion of A for

Sub(C), A:Sub(C') x Sub(C)— Sub(C).

ANB~—A
L
B C

h
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About S-meets

In any factorization system (H, S), the S-morphisms are
stable under generalized pullbacks.

A o A,

7,2/ :

%
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About S-meets

In any factorization system (H, S), the S-morphisms are
stable under generalized pullbacks. Assuming that C

has such limits, this gives one a notion of /\[ for Sub(C'),
/\,:Sub(C)"—~Sub(C).

A;

A\,
T T

o A,

C

A;,
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Structural summary

If C has coproducts, then so does Cr.

If C has a factorization system (+, S) and I" preserves
S-morphisms, then Cr has a factorization system

(U-"H, U1S).
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Structural summary

If C has coproducts, then so does Cr.

If C has a factorization system (+, S) and I" preserves
S-morphisms, then Cr has a factorization system

(UYH, U1S).
If C Is S-well-powered, then Cr 1s
U~'S-well-powered.
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Structural summary

If C has coproducts, then so does Cr.

If C has a factorization system (+, S) and I" preserves
S-morphisms, then Cr has a factorization system

(UYH, U1S).

If C Is S-well-powered, then Cr 1s
U~'S-well-powered.

If C has enough S-injectives and U :Cr—C has a right
adjoint, then Cr has enough U ~'S-injectives.

A complete deductive calculus for (implications of) coequations — p.9/30



Structural summary

Hereafter, we assume that C has all coproducts, a factor-
ization system (H, S), enough S-injectives and meets of
S-morphisms and i1s S-well-powered, and that I"-preserves
S-morphisms. We further assume that U :Cr—C has a right
adjoint H.
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Quasi-covarieties and covarieties

Let V C Cr. We define

HV = {(B, 5)
SV = (B, 0)

3V > (C, v)—=(B, 8)}
B, B)=—=(C, v) € V}

SV ={](Ci, w) | (Ci, 7i) € V}



Quasi-covarieties and covarieties

Let V C Cr. We define

HV = {(B, 5)
SV = (B, 0)

3V > (C, v)—=(B, 8)}
B, B)=—=(C, v) € V}

SV ={](Ci, w) | (Ci, 7i) € V}

We say that V Is a quasi-covariety if V. C ‘H>V.
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Quasi-covarieties and covarieties

Let V C Cr. We define

HV = {(B, 5)
SV = (B, 0)

3V > (C, v)—=(B, 8)}
B, B)=—=(C, v) € V}

SV ={](Ci, w) | (Ci, 7i) € V}

We say that V Is a quasi-covariety if V. C 'HXV. We say
that V is a covariety if VC SH> V.
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A coequational language

Fix a S-Injective C' € C. We define a simple language
Lcoeq (properly, £¢...).

For every P in Sub(U HC'), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC) C Loeq-

A complete deductive calculus for (implications of) coequations — p.12/30



A coequational language

Fix a S-Injective C' € C. We define a simple language
Lcoeq (properly, £¢...).

For every P in Sub(U HC'), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq.

If © € Lcoeq, then O € Lcoeq-
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A coequational language
Fix a S-Injective C' € C. We define a simple language
Lcoeq (properly, £¢...).

For every P in Sub(U HC'), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq.

If © € Lcoeq, then O € Lcoeq-
If {itier € Lcoeq, then /\1 @i € LCoeq:
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A coequational language

Fix a S-Injective C' € C. We define a simple language
Lcoeq (properly, £¢...).

For every P in Sub(U HC'), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq-

If © € Lcoeq, then O € Lcoeq-

If {©;}ier C Loeq, then /\1 @i € LCoeq:
If © € Lcoeq and h: HO—~HC', then o(h(z)) € Lcoeq.
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A coequational language
Fix a S-Injective C' € C. We define a simple language
Lcoeq (properly, £¢...).

For every P in Sub(U HC'), we introduce an atomic
proposition P in Lceeq, 1.€., SUb(UHC') C Lcoeq-

If © € Lcoeq, then O € Lcoeq-
If {©;}ier C Loeq, then /\1 @i € LCoeq:
If 0 € Lcoeq and h: HC—HC', then o(h(z)) € Lcoeq

If o € Lcoeqgand h: HC—=HC, then
Jy(e(y) A h(y) = x) 1S 1IN Lcoeq.
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A coequational language

e Forevery P inSub(UHC'), we introduce an atomic proposition
PiIn £Coeq’ l.e., SUb(UHC) C ,Ccoeq.

If QY € £Coeq1 then Ly € ‘CCoeq-

If {9073}2'6[ g »CCoeq1 then /\I Y; € £Coeq-

If ¢ € Leoegand h: HC—HC, then ¢(h(x)) € Lcoeq-

If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-
We define an interpretation [—]: Lcoeq—= Sub(UHC)):

[P] =P
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
P in Lcoeq, 1.8, SUb(UHC') C Loeq.
o If v € Lioeq: then Op € Lcoeq-
If {pi}ier € Lcoeq, then /\ i € Leoeq
If ¢ € Leoegand h: HC—HC, then ¢(h(x)) € Lcoeq-
If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-

We define an interpretation [—]: Lcoeq—= Sub(UHC)):

[O¢] = Of¢]

(Definition of O forthcoming!)
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
Pin ECoeq1 1.e., SUb(UHC) C ,Ccoeq.

I QY € ['Coeq1 then Ly € »CCoeq-
o If {Qpi}iel g £Coeq, then /\I Y; € ['Coeq-
If ¢ € Leoegand h: HC—HC, then ¢(h(x)) € Lcoeq-
If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-

We define an interpretation [—]: Lcoeq—= Sub(UHC)):

[[/\ i = /\ [:]
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
Pin ECoeq1 1.e., SUb(UHC) C ,Ccoeq.

I QY € ['Coeq1 then Ly € »CCoeq-
If {902'}736[ g »CCoeqv then /\I Y; € £Coeq-
o Ifoe Leoeqgand h: HC—HC', then p(h(z)) € Lcoeq:
If o € Lcoeqand h: HC—HC', then Jy(e(y) A h(y) = x) isin

LCoeq-

We define an interpretation [—]: Lcoeq—= Sub(UHC)):

[o(h(2))] = h*[¢]
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A coequational language

For every P in Sub(U HC'), we introduce an atomic proposition
Pin ECoeq1 1.e., SUb(UHC) C ,Ccoeq.

I QY € ['Coeq1 then Ly € ‘CCoeq-
If {9073}736[ g »CCoeq1 then /\I Y; € £Coeq-
If ¢ € Leoegand h: HC—HC, then ¢(h(x)) € Lcoeq-
o If o€ Lcoegand h: HC—HC', then Jy(p(y) A h(y) = z)isin

LCoeq-

We define an interpretation [—] : Lcoeq—= Sub(UHC)):

[By(e(y) A h(y) = z)] = 3nle]
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Coeqguations

A coalgebra (A, «) satisfies ¢ iff for every homomorphism
p: (A, a)—~HC, we have Im(p) < [¢].
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Coeqguations

A coalgebra (A, «) satisfies ¢ iff for every homomorphism
p: (A, a)—~HC, we have Im(p) < [¢]. In other words,
(A, a) = piffevery p: (A, a)—HC factors through [].

A—=UHC

N

[]
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Coeqguations

(A, a) = @ iffevery p: (A, a)—~HC factors through [¢].

A—=UHC

N

[]

Homomorphisms p: (A, a)—=HC' corres

p:A—~C. Thus, (A, o)

— (p Just In case,

A (via p), the image of the corresponding

lies In .

pond to colorings
nowever we color

nomomorphism p
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The cofree coalgebra H2
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Under any coloring, the elements of the coalgebra map to
elements of P.

A complete deductive calculus for (implications of) coequations — p.14/30



&

< ® »

\_ ) \ )




Q

@ &
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If we paint the circle red, it isn’t mapped to an element of
P.
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An implicational language

Define £Imp {90 = w | ©, w ~ LCoeq}
Say that (A, a) = © = 1 just in case, for every

p: (A, a)—=HC such that Im(p) < [¢], also Im(p) < [¢].
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An implicational language

Define £Imp {90 — w ‘ v, w c £Coeq}
Say that (A, a) = © = 1 just in case, for every

p: (A, a)—=HC such that Im(p) < [¢], also Im(p) < [¢].
A—Suygc A—~UHC

NN

This is not the same as ((A, a) = ¢ or (A, «) = ). That
would be true If either there is some p such that

m(p) £ [] or for all p, Im(p) < [¢].
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An implicational language

Define £Imp {90 — w ‘ v, w c £Coeq}
Say that (A, a) = © = 1 just in case, for every

p: (A, a)—=HC such that Im(p) < [¢], also Im(p) < [¢].
A—Suygc A—~UHC

AN

P &

This is also not the same as (A, a) &= —p V ¥ (if
Sub(U HC) is a Heyting algebra).
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An implicational language

Define £Imp {90 — w ‘ v, w c £Coeq}

Say that (A, o) &=

— (» = 1) Just In case, for every

p: (A, a)—=HC such that Im(p) < [¢], also Im(p) < [¢].
A—Suygc A—~UHC

Note:

(4,

AN

P &

a) Eoliff (A, o) ET = o,

where T = (HC=HC().
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The Covariety Theorems

Given a class V of coalgebras, define

Th(V)={p e LE .. | V=, CS-injective},

Coeq

Imp(V)={P=QeLl |[VEP=Q, PQ<UHC,

Imp

C' S-injective}.
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The Covariety Theorems

Given a class V of coalgebras, define

Th(V)={pe L |V E g, CS-injective},

Coeq

Imp(V)={P=QeLl |[VEP=Q, PQ<UHC,

Imp

C' S-injective}.

Given a collection S of (implications between)
coequations, define

Mod(S) = {({A, a) | (A, a) = S}.
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The Covariety Theorems

' Theorem (The “co-Birkhoff” theorem). For any
Vv,

SHEV = Mod Th(V).
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The Covariety Theorems

Theorem (The “co-Birkhoff” theorem). For any
Vv,
SHYV = Mod Th(V).

Theorem (The co-quasivariety theorem). For
any V,

H>V = Mod Imp(V).
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V. The Invariance Theorem
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Birkhoff’s completeness theorem

So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?
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Birkhoff’s completeness theorem

So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?

Let .S be a set of equations for an algebraic signature >..

Let Ded(S) denote the deductive closure of S under the
usual equational logic.
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Birkhoff’s completeness theorem

So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?

Let .S be a set of equations for an algebraic signature >..

Let Ded(S) denote the deductive closure of S under the

usual equational logic.
-
Theorem (Birkhoff’s completeness theorem).

For any set S of equations,

Ded(.S) = ThMod(.5).
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Birkhoff’s completeness theorem

So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?

Let .S be a set of equations for an algebraic signature >..

Let Ded(S) denote the deductive closure of S under the

usual equational logic.
-
Theorem (Birkhoff’s completeness theorem).

For any set S of equations,

Ded(.S) = ThMod(.5).

Here, Th(V) denotes the equational theory of a class of al-
gebras.
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Birkhoff’s completeness theorem

-
Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S5).

Compare this to the variety theorem, namely for every V,

HSPV = Mod Th(V).
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Birkhoff’s completeness theorem

-
Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S5).

Main goal Find a logic on sets of coequations such that
for any set S of coequations over C,

Ded(.S) = ThMod(.5).
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Birkhoff’s completeness theorem

-
Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S5).

Main goal Find a logic on sets of coequations such that
for any set S of coequations over C,

Ded(.S) = ThMod(.5).

First step Find the formal dual to Birkhoff’s
completeness theorem.

A complete deductive calculus for (implications of) coequations — p.19/30



Theinvariance theorem

Define interior operators

7 :Sub(UHC)— Sub(UHC)

by

P =\/{U(A, a)=—~UHC' | (A, a) € Subc (HC)}
P =\/{Q~—~UHC |Yh:HC—~HC .3,Q < P}
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Theinvariance theorem

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

P 1s the (carrier of the) largest subcoalgebra of HC'.
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Theinvariance theorem

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

P i1s the (carrier of the) largest subcoalgebra of HC'

P 1s the largest endomorphism invariant subobject
of UHC, that Is:

Forevery h-HC—-HC, 3, b P < DP;
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Theinvariance theorem

of UHC, that Is:
Forevery h-HC'—HC', 4y,

P <

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

P i1s the (carrier of the) largest subcoalgebra of HC'
P 1s the largest endomorphism invariant subobject

P;

If, forevery h: HC—-=HC, 3,0 < Q,then Q < P.
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of) coequations — p.20/30



Theinvariance theorem

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

IS an $4 necessity operator.
If P~ Q) then P F 10,
P P,

P P:

(P— Q)P — 1o,
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Theinvariance theorem

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

IS an $4 necessity operator.

If P~ Q) then P F 10,

PrF P;

P P:

(P— Q)P — 1o,

If I" preserves pullbacks of S-morphisms, then so Is
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Theinvariance theorem

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

-

Theorem (The invariance theorem). Let ¢ be a
coequation over C. For any coequation v over C,

Mod(p) = v iff o <.
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Theinvariance theorem

P =\/{U(A, a)~—~UHC | (A, o) € Subc, (HC)}
P=\/{Q~—~UHC |VYh:HC—~HC .3,Q < P}

-

Mod(p) = v iff

Theorem (The invariance theorem). Let ¢ be a
coequation over C. For any coequation v over C,

p < .

In other words,

P 1s the least coequation satisfied by
Mod(P). It can be regarded as a measure of the “coequa-
tional commitment” of P.

A complete deductive calculus for (implications of) coequations — p.20/30



Outline

V. The Invariance Theorem
V1. Coequational logic (Soundness)

VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)

|X. Implicational logic (Completeness)
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Outline

V1. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)

|X. Implicational logic (Completeness)
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A sound rule

An inference rule L " o IS sound just In case,

whenever (A, o) &= o1, ..., (A, @) = ¢,, then
(A4, a) = 9.

A complete deductive calculus for (implications of) coequations — p.22/30



A sound rule

An inference rule L " o IS sound just In case,

whenever (A, a) = @1, ..., (A, a) = @, then
(A, a) = ¢.

Theorem. The rule M /\ _E is sound.
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A sound rule

Theorem. /\ -E 1s sound.
Proof. Suppose (A, a) = /\ @w; and p: (A, a)—HC'. We must
show that Im(p) < [¢:].

=

A—>UHC

[04]
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A sound rule

Theorem. /\ -FE 15 sound.

Proof. Suppose (A, a) = /\ @w; and p: (A, a)—HC'. We must

show that Im(p) < [¢:].
=

p

A UHC

A

[[/\ pi] —— ]
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A sound rule

Theorem. /\ -FE 15 sound.

Proof. Suppose (A, a) = /\gpi and p: (A, a)—=HC'. We must

show that Im(p) < [¢;]. But we know Im(p) < [[/\ wi] < [vi]
[]

p

UHC

A

[[/\ pi] —— ]

4
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A coequational calculus

The following rules are sound.

Aspe
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A coequational calculus

The following rules are sound.

If Im(p: (A, a)—=HC') < ;] foreach ¢ € I, then
Im(p) < A\lpil:

A complete deductive calculus for (implications of) coequations — p.23/30



A coequational calculus

The following rules are sound.

{@z}zé[
AN /\-
oy /\ : /\%
iD'l
L

If Im(p: (A, a)=HC') <[], thenIm(p) < O[]
(because Im(p) is a subcoalgebra contained in o).

A complete deductive calculus for (implications of) coequa

tions — p.23/30



A coequational calculus

The following rules are sound.

Op p(h(z))
Here, Sub applies for every I'-nomomorphism
h:HC—HC.
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A coequational calculus

The following rules are sound.

{sz}zel
Nei A\ -
oy /\ : /\%
2 2
op ! @) >

Let p: HC'—=HC' be given.

Im(p) < A [] iff 35 Im(p) < [
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A coequational calculus

The following rules are sound.

{sz}zel
Nei A\ -
oy /\ : /\%
2 2
op ! @) >

Let p: HC'—=HC' be given.

Im(p) < R*[] iff Im(h o p) < [¢].
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A coequational calculus

The following rules are sound.

{sz}zel
Nei A\ -
oy /\ : /\%
2 2
op ! @) >

Im(p) < R*[] iff Im(h o p) < [¢].

Hence, if for every ¢: HC—=HC', Im(q) < [], then
Im(p) < h*[¢].
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A coequational calculus

The following rules are sound.

{sz}zel
Neiop A -
vo /\ : /\%
2 ¥
op @) >
¢ o] = [¥] DSR
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A coequational calculus

The following rules are sound.

o o] = [¥] DSR

(0
We call this rule DSR for Damn Semantic Rule. It i1s a

damn shame that we’ve had to include such an ugly rule.
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A coequational calculus

The following rules are sound.

o o] = [¥] DSR
(0

We need this rule (along with /\ -E) to ensure that the

deductive closure of S is closed upwards, so if [¢] <[],
then o - .
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A coequational calculus

The following rules are sound.

p p

— -l Sub

O p(h(z))

v [[:Z]] il L
Maybe, we can replace this semantic rule with a rule
p ey

; where ¢ F 9 IS proven in an appropriate logic
for Sub(UHC).
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A coequational calculus

The following rules are sound.

©0; /\ i
2 2
op ! @) >
e [l = [¥] DSR
Y

Let S C Lcoeq- Let Ded(.S) denote the deductive closure of
S under these rules. We see

Ded(.S) € ThMod(.S5).
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Outline

V1. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)

|X. Implicational logic (Completeness)

A complete deductive calculus for (implications of) coequations — p.24/30



Outline

VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)
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A lemma

Lemma.

[l = N\{h*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—-=HC',

3 N\ {1l | h:HC—=HC'} < [¢].

=
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A lemma

Lemma.

[l = N\{h*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—-=HC',

NB el | h: HC—=HC} < h*[g].

=
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A lemma

Lemma.

[l = N\{h*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—-=HC',

AL o] | h: HC—=HC} < h*[¢].
C: It suffices to show that for all k: HC—HC',

Afe] < E*[e].
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A lemma

Lemma.

[l = N\{h*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—-=HC',

AL o] | h: HC—=HC} < h*[¢].
C: It suffices to show that for all k: HC—=HC',

3 @[] < [e].
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A lemma

Lemma.

[l = N\{h*[¢] | h:HC—HC}.

Proof. Recall @] = V{P | Vh-HC—HC .3, P <[]}
D: It suffices to show that for all £: HC—-=HC',

AL o] | h: HC—=HC} < h*[¢].
C: It suffices to show that for all k: HC—HC',

T A [¢] < [¢].

But, B[] is invariant, so 3 1 [¢] < @Af¢] < .
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A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) = ¢, then
p € Ded(S), i.e., ThMod(S) C Ded(S5).
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A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) | ¢, then ¢ € Ded(S5), i.e.,
ThMod(S) C Ded(S5).

Proof. Let ¢ = /\ S. =>>
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A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) | ¢, then ¢ € Ded(S5), i.e.,
ThMod(S) C Ded(S5).
Proof. Let ¢ = /\ S.

S

o\

=
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A completeness theorem (of sorts)
Theorem. Let S C Lcoeq- If Mod(S) | ¢, then ¢ € Ded(S5), i.e.,
ThMod(S) C Ded(S5).

Proof. Let ¢ = /\S.
5
AN

W) [ hae——~mcy "

=
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A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) | ¢, then ¢ € Ded(S5), i.e.,
ThMod(S) C Ded(S).

Proof. Let ¢ = /\ S.

= /\ I
| A Al
A{(h(z)) | h:HC—=HC'}

=
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A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) = ¢, then ¢ € Ded(S), i.e.,
ThMod(S) C Ded(S).

Proof. Let ¢ = /\ S.

—/\I
oG [RHC—HCT " ) |

A (h()) | h-H0—>HC}
0 A {¢(h(z)) | h:HC—HC'}

0-1

=



A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) | ¢, then ¢ € Ded(S5), i.e.,
ThMod(S) C Ded(S).

Proof. So, we see that S+ O /\{w z)) | h:HC—HC'}. Now,

by the |

1e1mina

)

[@ A{¢((e)) | h-HC—HC}] = 0@ [¢],

and by the Invariance Theorem, O 17 [] < [¢]. S>>

A complete deductive calculus for (implications of) coequations — p.26/30



A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) | ¢, then ¢ € Ded(S5), i.e
ThMod(S) C Ded(S).

Proof. Hence,

[0 A\ {¢(h(z)) | h:HC—=HC} Ag] = 0@ [¥] A o] = 0@ [¢]

and so (by the damn semantic rule),
S+a N{e(h(z) | h HO—=HC} A

and thus S F . []
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A completeness theorem (of sorts)

Theorem. Let S C Lcoeq- If Mod(S) = ¢, then ¢ € Ded(S), i.e
ThMod(S) C Ded(S).

Proof. Hence,
[0 A{¢(h(z)) | h:HC——HC} Ag] =0 @ [¥] Ale]l = 0@ [¥]
and so (by the damn semantic rule),
S+a N{e(h(z) | h HO—=HC} A
and thus S F . ]

Note: We used /\ -E and DSR only to show that if 0 @@ ¢ € 5, then
@ € Ded(S).
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VIII. Implicational logic (Soundness)
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Outline

VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)
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An implicational calculus

The following rules are sound.

P = /\% /\-E

© = YP;
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An implicational calculus

The following rules are sound.

{@jwz 1€
90:>/\¢i/\_E I/\l

= 1 gOi/\wZ

A complete deductive calculus for (implications of) coequations — p.28/30



An implicational calculus

The following rules are sound.

p = /\% /\-E

© = YP;

{90:>¢z el /\ N
o= N\

-

p = Up
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An implicational calculus

The following rules are sound.

Sub

{o = Vi }ier
Y = W, -1
© =>/>bz- NE o= N\ A
- (Fz(p(z) A h(z) =y)) = ¥
p = 0O o = Y(h(z))

A complete deductive calculus for (implications

of) coequat

ions — p.28/30



An implicational calculus

The following rules are sound.

{o = Ui tier
Y = (0% -
© =>/>bz- NE o= N\ A
y (Fz(p(z) AN(z) =y)) = ¢ Sub
@ = Oy © = Y(h(z))

O = Y Y = U
O = U

Cut
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An implicational calculus

The following rules are sound.

{o = Vitier
Y = /\ (V% /\ -|
p = P /\ - = /\ Vi
- Gee(e) Ab2) =) = 0
p = Oy p = P(h(z))
I e PR R U 1 U
o = U 0 = U

Damn semantic rule!
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Sketch of completeness

1. Define two operators Sub(UHC)— Sub(UHC'):

consg Y = /\{¢\90:>¢€S}
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Sketch of completeness

1. Define two operators Sub(UHC)— Sub(UHC'):

consg ¢ = /\{w =1 e S}
entgp = \{¢ | Mod(S) |= ¢ = ¢}
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Sketch of completeness

1. Define two operators Sub(UHC')— Sub(UHC'):

consg ¢ = /\{w =1 e S}
entgp = \{¢ | Mod(S) |= ¢ = ¢}

Note:

Mod(S) = Mod({yp = consgs ¢ | ¢ € Lcoeq})
= Mod({p = ents ¢ | ¢ € Lcoeq})

Subgoal: Show CONSped(S) = entg.
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Sketch of completeness

1. Define two operators Sub(UHC')— Sub(UHC'):

2. Show that ent g Is the greatest suboperator of 0 o consg such
that:
entg IS a comonad (deflationary, idempotent, monotone);

entg IS endomorphisminvariant — forall h: HC—HC,
d;, o entg < entg od,,.
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Sketch of completeness

1. Define two operators Sub(UHC')— Sub(UHC'):

2. Show that ent g Is the greatest EIEIO (Endomorphism Invariant
Interior Operator).
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Sketch of completeness

1. Define two operators Sub(UHC')— Sub(UHC'):
2. Show that ent g Is the greatest EIEIO.
3. Show that if S'Is deductively closed, consg is EIEIO. Hence,

consg = entg.
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Sketch of completeness

1. Define two operators Sub(UHC')— Sub(UHC'):
2. Show that ent g Is the greatest EIEIO.
3. Show that if S'Is deductively closed, consg is EIEIO. Hence,

consg = entg.

4. ImpMod(S) = {¢ = ¢ | 1) > ents p}. Use DSR and /\ -E to
show that Ded(.S) = Imp Mod(S).
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Outline

VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)
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VI.

VII.
VIII.
| X.

ne Invariance Theorem
Coequational logic (Soundness)
Coequational logic (Completeness)

Implicational logic (Soundness)

Implicational logic (Completeness)
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