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Coalgebras

Given a functor Γ:C //C , a Γ-coalgebra is a pair

〈C, γ〉,

where C ∈ C and γ :C //ΓC .
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Coalgebras

Given a functor Γ:C //C , a Γ-coalgebra is a pair

〈C, γ〉,

where C ∈ C and γ :C //ΓC . A Γ-morphism is a
commutative square, as in

ΓC
Γf // ΓD

C

γ

OO

f
// D

δ

OO
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Coalgebras

Given a functor Γ:C //C , a Γ-coalgebra is a pair

〈C, γ〉,

where C ∈ C and γ :C //ΓC . A Γ-morphism is a
commutative square, as in

ΓC
Γf // ΓD

C

γ

OO

f
// D

δ

OO

The category of Γ-coalgebras and their homomorphisms is

denoted CΓ.
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Factorization systems
A factorization system for C consists of two collections of

arrows, H and S , satisfying the following conditions.
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Factorization systems
A factorization system for C consists of two collections of
arrows, H and S , satisfying the following conditions.

• Every isomorphism is in H and S;
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arrows, H and S , satisfying the following conditions.

• Every isomorphism is in H and S;

• H and S are closed under composition;
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Factorization systems
A factorization system for C consists of two collections of
arrows, H and S , satisfying the following conditions.

• Every isomorphism is in H and S;

• H and S are closed under composition;

• H and S satisfy the diagonal fill-in property , namely,
for every commutative square

• e // //

��

•

��
f

��
• //

m
// •

where e ∈ H and m ∈ S , there is a unique arrow f , as
shown, making each triangle commute ;
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Factorization systems
A factorization system for C consists of two collections of
arrows, H and S , satisfying the following conditions.

• Every isomorphism is in H and S;

• H and S are closed under composition;

• H and S satisfy the diagonal fill-in property;

• every arrow f factors as f = m ◦ e, where e ∈ H and
m ∈ S;
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Factorization systems
• every arrow f factors as f = m ◦ e, where e ∈ H and
m ∈ S;

If C has a factorization system, then any arrow f :A //B
can be factored uniquely up to isomorphism thus.

A
f //

����

B

Im(f)
<<

<<xxxxxxx
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Factorization systems
• every arrow f factors as f = m ◦ e, where e ∈ H and
m ∈ S;

For each C ∈ C, define

Sub(C) = {j ∈ S | cod(j) = C}/ ∼= .
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Factorization systems
• every arrow f factors as f = m ◦ e, where e ∈ H and
m ∈ S;

For each C ∈ C, define

Sub(C) = {j ∈ S | cod(j) = C}/ ∼= .

C is S-well-powered if, for every C ∈ C, Sub(C) is a set.
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Factorization systems
• every arrow f factors as f = m ◦ e, where e ∈ H and
m ∈ S;

For each C ∈ C, define

Sub(C) = {j ∈ S | cod(j) = C}/ ∼= .

Each h :C //D induces a morphism ∃h :Sub(C) // Sub(D)

by ∃h(A //i //C ) = Im(i ◦ h).

A
��

��

// // ∃hA
��

��
C

h
// D
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Factorization systems for coalgebras
Let 〈H, S〉 be a factorization system and suppose that
Γ:C //C preserves S-morphisms (i.e., if i ∈ S , then
Γi ∈ S) .
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Factorization systems for coalgebras
Let 〈H, S〉 be a factorization system and suppose that
Γ:C //C preserves S-morphisms.
Then the pair 〈U−1(H), U−1(S)〉 form a factorization
system for CΓ.

A complete deductive calculus for (implications of) coequations – p.5/30



Factorization systems for coalgebras
Let 〈H, S〉 be a factorization system and suppose that
Γ:C //C preserves S-morphisms.
Then the pair 〈U−1(H), U−1(S)〉 form a factorization
system for CΓ.
In other words, every Γ-homomorphism
f :〈A, α〉 //〈B, β〉 factors uniquely as in

A
f //

p
����

B

Im(f)
<< i

<<xxxxxxx

where p and i are Γ-homomorphisms.
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Cofree coalgebras

Let 〈D, δ〉 be given, together with a C-coloring εC :D //C
of D.
We say that 〈D, δ〉 is cofree over C just in case, for every
coalgebra 〈A, α〉 and every coloring p :A //C , there is a
unique homomorphism p̃ :〈A, α〉 //〈D, δ〉 such that the
diagram below commutes.

D
εC

����
��

��
��

〈D, δ〉

C Ap
oo

p̃

OO

〈A, α〉

p̃

OO
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Cofree coalgebras

Let 〈D, δ〉 be given, together with a C-coloring εC :D //C
of D.

D
εC

����
��

��
��

〈D, δ〉

C Ap
oo

p̃

OO

〈A, α〉

p̃

OO

For any coloring p :A //C , there is a Γ-homomorphism

p̃ :〈A, α〉 //〈D, δ〉 “consistent” with p.
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Cofree coalgebras

Let 〈D, δ〉 be given, together with a C-coloring εC :D //C
of D.

D
εC

����
��

��
��

〈D, δ〉

C Ap
oo

p̃

OO

〈A, α〉

p̃

OO

If, for every object C ∈ C, there is a cofree 〈D, δ〉 over
C, then we have an adjunction

CΓ

U

⊥
**C.

H

kk
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S-injectives

An object C ∈ C is S-injective if, for all j :A // //B in S , and
all f :A //C , there is a (not necessarily unique) extension
g :B //C making the diagram below commute.

B
g // C

A
OO j

OO

f

>>~~~~~~~
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S-injectives

An object C ∈ C is S-injective if, for all j :A // //B in S , and
all f :A //C , there is a (not necessarily unique) extension
g :B //C making the diagram below commute.

B
g // C

A
OO j

OO

f

>>~~~~~~~

C has enough S-injectives iff for every A ∈ C, there is an

S-injective C ∈ C and a S-morphism A // //C .
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S-injectives

Theorem. If U :CΓ
//C has a right adjoint H and C

has enough S-injectives, then CΓ has enough

U−1S-injectives.
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S-injectives
Theorem. If U :CΓ

//C has a right adjoint H and C has enough

S-injectives, then CΓ has enough U−1S-injectives.

Proof. Let 〈A, α〉 be given and A ≤ C, where C is S-injective.

Then 〈A, α〉 ≤ HC. It suffices to show HC is U−1S-injective.
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S-injectives
Theorem. If U :CΓ

//C has a right adjoint H and C has enough

S-injectives, then CΓ has enough U−1S-injectives.

Proof. Let 〈A, α〉 be given and A ≤ C, where C is S-injective.

Then 〈A, α〉 ≤ HC. It suffices to show HC is U−1S-injective.

Let j :〈B, β〉 // //〈D, δ〉 and f :〈B, β〉 //HC be given.

〈D, δ〉 HC

〈B, β〉

OOj

OO

f

;;wwwwwwwww
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S-injectives
Theorem. If U :CΓ

//C has a right adjoint H and C has enough

S-injectives, then CΓ has enough U−1S-injectives.

Proof. Let 〈A, α〉 be given and A ≤ C, where C is S-injective.

Then 〈A, α〉 ≤ HC. It suffices to show HC is U−1S-injective.

Let j :〈B, β〉 // //〈D, δ〉 and f :〈B, β〉 //HC be given.

〈D, δ〉 HC

〈B, β〉

OOj

OO

f

;;wwwwwwwww

D C

B

OOj

OO

�

f

>>~~~~~~~
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S-injectives
Theorem. If U :CΓ

//C has a right adjoint H and C has enough

S-injectives, then CΓ has enough U−1S-injectives.

Proof. Let 〈A, α〉 be given and A ≤ C, where C is S-injective.

Then 〈A, α〉 ≤ HC. It suffices to show HC is U−1S-injective.

Let j :〈B, β〉 // //〈D, δ〉 and f :〈B, β〉 //HC be given. By the

injectivity of C, we get a map D //C as shown . . .

〈D, δ〉 HC

〈B, β〉

OOj

OO

f

;;wwwwwwwww

D // C

B

OO

�

j

OO

f

>>~~~~~~~
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S-injectives
Theorem. If U :CΓ

//C has a right adjoint H and C has enough

S-injectives, then CΓ has enough U−1S-injectives.

Proof. Let 〈A, α〉 be given and A ≤ C, where C is S-injective.

Then 〈A, α〉 ≤ HC. It suffices to show HC is U−1S-injective.

Let j :〈B, β〉 // //〈D, δ〉 and f :〈B, β〉 //HC be given. By the

injectivity of C, we get a map D //C as shown and hence, by

adjoint transposition, a homomorphism 〈D, δ〉 //HC .

〈D, δ〉 // HC

〈B, β〉

OOj

OO

f

;;wwwwwwwww

D // C

B

OO

�

j

OO

f

>>~~~~~~~
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About S-meets
Recall that Sub(C) denotes the poset of isomorphism
classes of S-morphisms into C.
In any factorization system 〈H, S〉, the S-morphisms are
stable under pullbacks.

h∗A
��

��

//
_
� A

��

��
B

h
// C

Thus, if C has pullbacks of S-morphisms, then each

h :B //C induces a functor h∗ :Sub(C) // Sub(B).
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About S-meets
In any factorization system 〈H, S〉, the S-morphisms are
stable under pullbacks. This gives one a notion of ∧ for
Sub(C), ∧ :Sub(C) × Sub(C) // Sub(C).

A ∧ B
��

��

// //
_
� A

��

��
B //

h
// C
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About S-meets
In any factorization system 〈H, S〉, the S-morphisms are
stable under generalized pullbacks.

Avv

vvmmmmmmmmmmmmmmmm

}}zz
zz

zz
zz

�� ((QQQQQQQQQQQQQQQQQ

Ai0

((QQQQQQQQQQQQQQQQQ Ai1
!!

!!DD
DD

DD
D

Ai2
��

��

. . . Aiκvv

vvmmmmmmmmmmmmmmmm
. . .

C
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About S-meets
In any factorization system 〈H, S〉, the S-morphisms are
stable under generalized pullbacks. Assuming that C

has such limits, this gives one a notion of
∧

I
for Sub(C),

∧
I
:Sub(C)I // Sub(C).

∧
I
Ai

vv

vvmmmmmmmmmmmmmmm ||

||yy
yy

yy
y ��

��

((

((PPPPPPPPPPPPPPP

Ai0 ))

))SSSSSSSSSSSSSSSSSS Ai1 $$

$$IIIIIIIII
Ai2

��

��

. . . Aiκuu

uukkkkkkkkkkkkkkkkkk
. . .

C
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Structural summary
• If C has coproducts, then so does CΓ.
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Structural summary
• If C has coproducts, then so does CΓ.

• If C has a factorization system 〈H, S〉 and Γ preserves
S-morphisms, then CΓ has a factorization system
〈U−1H, U−1S〉.
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Structural summary
• If C has coproducts, then so does CΓ.

• If C has a factorization system 〈H, S〉 and Γ preserves
S-morphisms, then CΓ has a factorization system
〈U−1H, U−1S〉.

• If C is S-well-powered, then CΓ is
U−1S-well-powered.
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Structural summary
• If C has coproducts, then so does CΓ.

• If C has a factorization system 〈H, S〉 and Γ preserves
S-morphisms, then CΓ has a factorization system
〈U−1H, U−1S〉.

• If C is S-well-powered, then CΓ is
U−1S-well-powered.

• If C has enough S-injectives and U :CΓ
//C has a right

adjoint, then CΓ has enough U−1S-injectives.
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Structural summary
Hereafter, we assume that C has all coproducts, a factor-

ization system 〈H, S〉, enough S-injectives and meets of

S-morphisms and is S-well-powered, and that Γ-preserves

S-morphisms. We further assume that U :CΓ
//C has a right

adjoint H .
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Quasi-covarieties and covarieties
Let V ⊆ CΓ. We define

HV = {〈B, β〉 | ∃V 3 〈C, γ〉 // //〈B, β〉}

SV = {〈B, β〉 | ∃〈B, β〉 // //〈C, γ〉 ∈ V}

ΣV = {
∐

〈Ci, γi〉 | 〈Ci, γi〉 ∈ V}
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Quasi-covarieties and covarieties
Let V ⊆ CΓ. We define

HV = {〈B, β〉 | ∃V 3 〈C, γ〉 // //〈B, β〉}

SV = {〈B, β〉 | ∃〈B, β〉 // //〈C, γ〉 ∈ V}

ΣV = {
∐

〈Ci, γi〉 | 〈Ci, γi〉 ∈ V}

We say that V is a quasi-covariety if V ⊆ HΣV.
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Quasi-covarieties and covarieties
Let V ⊆ CΓ. We define

HV = {〈B, β〉 | ∃V 3 〈C, γ〉 // //〈B, β〉}

SV = {〈B, β〉 | ∃〈B, β〉 // //〈C, γ〉 ∈ V}

ΣV = {
∐

〈Ci, γi〉 | 〈Ci, γi〉 ∈ V}

We say that V is a quasi-covariety if V ⊆ HΣV. We say

that V is a covariety if V ⊆ SH
∑

V.
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A coequational language
Fix a S-injective C ∈ C. We define a simple language
LCoeq (properly, LC

Coeq).

• For every P in Sub(UHC), we introduce an atomic
proposition P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.
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A coequational language
Fix a S-injective C ∈ C. We define a simple language
LCoeq (properly, LC

Coeq).

• For every P in Sub(UHC), we introduce an atomic
proposition P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.
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A coequational language
Fix a S-injective C ∈ C. We define a simple language
LCoeq (properly, LC

Coeq).

• For every P in Sub(UHC), we introduce an atomic
proposition P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.
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A coequational language
Fix a S-injective C ∈ C. We define a simple language
LCoeq (properly, LC

Coeq).

• For every P in Sub(UHC), we introduce an atomic
proposition P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.
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A coequational language
Fix a S-injective C ∈ C. We define a simple language
LCoeq (properly, LC

Coeq).

• For every P in Sub(UHC), we introduce an atomic
proposition P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then
∃y(ϕ(y) ∧ h(y) = x) is in LCoeq.
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A coequational language
• For every P in Sub(UHC), we introduce an atomic proposition

P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ∃y(ϕ(y) ∧ h(y) = x) is in

LCoeq.

We define an interpretation

�

−

�

:LCoeq
// Sub(UHC):

�
P

�

= P
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A coequational language
• For every P in Sub(UHC), we introduce an atomic proposition

P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ∃y(ϕ(y) ∧ h(y) = x) is in

LCoeq.

We define an interpretation

�

−

�

:LCoeq
// Sub(UHC):

� �
ϕ

�
=

� �

ϕ

�

(Definition of � forthcoming!)
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A coequational language
• For every P in Sub(UHC), we introduce an atomic proposition

P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ∃y(ϕ(y) ∧ h(y) = x) is in

LCoeq.

We define an interpretation

�

−

�

:LCoeq
// Sub(UHC):

� ∧
ϕi

�

=
∧ �

ϕi

�
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A coequational language
• For every P in Sub(UHC), we introduce an atomic proposition

P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ∃y(ϕ(y) ∧ h(y) = x) is in

LCoeq.

We define an interpretation

�

−

�

:LCoeq
// Sub(UHC):

�

ϕ(h(x))

�

= h∗

�

ϕ

�
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A coequational language
• For every P in Sub(UHC), we introduce an atomic proposition

P in LCoeq, i.e., Sub(UHC) ⊆ LCoeq.

• If ϕ ∈ LCoeq, then �

ϕ ∈ LCoeq.

• If {ϕi}i∈I ⊆ LCoeq, then
∧

I
ϕi ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ϕ(h(x)) ∈ LCoeq.

• If ϕ ∈ LCoeq and h :HC //HC , then ∃y(ϕ(y) ∧ h(y) = x) is in

LCoeq.

We define an interpretation

�

−

�

:LCoeq
// Sub(UHC):

�

∃y(ϕ(y) ∧ h(y) = x)

�

= ∃h

�

ϕ

�
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Coequations
A coalgebra 〈A, α〉 satisfies ϕ iff for every homomorphism
p :〈A, α〉 //HC , we have Im(p) ≤

�

ϕ

�

.
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Coequations
A coalgebra 〈A, α〉 satisfies ϕ iff for every homomorphism
p :〈A, α〉 //HC , we have Im(p) ≤

�

ϕ

�

. In other words,
〈A, α〉 |= ϕ iff every p :〈A, α〉 //HC factors through

�

ϕ

�

.

A
p //

""EE
EE

EE
EE

E UHC

�

ϕ
�

OO

OO
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Coequations

〈A, α〉 |= ϕ iff every p :〈A, α〉 //HC factors through
�

ϕ
�

.

A
p //

""EE
EE

EE
EE

E UHC

�

ϕ

�

OO

OO

Homomorphisms p :〈A, α〉 //HC correspond to colorings

p̃ :A //C . Thus, 〈A, α〉 |= ϕ just in case, however we color

A (via p̃), the image of the corresponding homomorphism p

lies in ϕ.
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Example

The cofree coalgebra H2
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Example

A coequation.
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Example

This coalgebra satisfies P .
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Example

Under any coloring, the elements of the coalgebra map to
elements of P .
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Example

This coalgebra doesn’t satisfy P .

A complete deductive calculus for (implications of) coequations – p.14/30



Example

If we paint the circle red, it isn’t mapped to an element of
P .
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.

A
p //

##GGGGGGGGG UHC

P
OO

OO

⇒

A
p //

##FF
FF

FF
FF

FF
UHC

Q
OO

OO

This is not the same as (〈A, α〉 6|= ϕ or 〈A, α〉 |= ψ). That
would be true if either there is some p such that
Im(p) 6≤

�

ϕ

�

or for all p, Im(p) ≤

�

ψ

�

.
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.

A
p //

##GGGGGGGGG UHC

P
OO

OO

⇒

A
p //

##FF
FF

FF
FF

FF
UHC

Q
OO

OO

This is also not the same as 〈A, α〉 |= ¬ϕ ∨ ψ (if
Sub(UHC) is a Heyting algebra).
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An implicational language
Define LImp = {ϕ⇒ ψ | ϕ, ψ ∈ LCoeq}.
Say that 〈A, α〉 |= ϕ⇒ ψ just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤

�

ϕ

�

, also Im(p) ≤

�

ψ

�

.

A
p //

##GGGGGGGGG UHC

P
OO

OO

⇒

A
p //

##FF
FF

FF
FF

FF
UHC

Q
OO

OO

Note:
〈A, α〉 |= ϕ iff 〈A, α〉 |= > ⇒ ϕ,

where > = (HC HC ).
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II. Quasi-covarieties and covarieties

III. Coequations

IV. The Covariety Theorems

V. The Invariance Theorem
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VII. Coequational logic (Completeness)

VIII. Implicational logic (Soundness)

IX. Implicational logic (Completeness)
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The Covariety Theorems
Given a class V of coalgebras, define

Th(V) = {ϕ ∈ LC
Coeq | V |= ϕ, C S-injective},

Imp(V) = {P ⇒ Q ∈ LC
Imp | V |= P ⇒ Q, P,Q ≤ UHC,

C S-injective}.
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The Covariety Theorems
Given a class V of coalgebras, define

Th(V) = {ϕ ∈ LC
Coeq | V |= ϕ, C S-injective},

Imp(V) = {P ⇒ Q ∈ LC
Imp | V |= P ⇒ Q, P,Q ≤ UHC,

C S-injective}.

Given a collection S of (implications between)
coequations, define

Mod(S) = {〈A, α〉 | 〈A, α〉 |= S}.
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The Covariety Theorems

Theorem (The “co-Birkhoff” theorem). For any
V,

SHΣV = ModTh(V).
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The Covariety Theorems

Theorem (The “co-Birkhoff” theorem). For any
V,

SHΣV = ModTh(V).

Theorem (The co-quasivariety theorem). For
any V,

HΣV = Mod Imp(V).
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Birkhoff’s completeness theorem
So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?
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Birkhoff’s completeness theorem
So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?

Let S be a set of equations for an algebraic signature Σ.
Let Ded(S) denote the deductive closure of S under the
usual equational logic.

A complete deductive calculus for (implications of) coequations – p.19/30



Birkhoff’s completeness theorem
So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?

Let S be a set of equations for an algebraic signature Σ.
Let Ded(S) denote the deductive closure of S under the
usual equational logic.

Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S).
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Birkhoff’s completeness theorem
So much for the formal dual of the variety theorem. What
about the formal dual of Birkhoff’s completeness theorem?

Let S be a set of equations for an algebraic signature Σ.
Let Ded(S) denote the deductive closure of S under the
usual equational logic.

Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S).

Here, Th(V) denotes the equational theory of a class of al-

gebras.
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Birkhoff’s completeness theorem

Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S).

Compare this to the variety theorem, namely for every V,

HSPV = ModTh(V).
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Birkhoff’s completeness theorem

Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S).

Main goal Find a logic on sets of coequations such that
for any set S of coequations over C,

Ded(S) = ThMod(S).
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Birkhoff’s completeness theorem

Theorem (Birkhoff’s completeness theorem).
For any set S of equations,

Ded(S) = ThMod(S).

Main goal Find a logic on sets of coequations such that
for any set S of coequations over C,

Ded(S) = ThMod(S).

First step Find the formal dual to Birkhoff’s
completeness theorem.
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The invariance theorem
Define interior operators

�

,

�

:Sub(UHC) // Sub(UHC)

by

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}
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The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

•

�

P is the (carrier of the) largest subcoalgebra of HC.

A complete deductive calculus for (implications of) coequations – p.20/30



The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

•

�

P is the (carrier of the) largest subcoalgebra of HC.

•

�

P is the largest endomorphism invariant subobject
of UHC, that is:
• For every h :HC //HC , ∃h

�

P ≤

�

P ;
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The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

•

�

P is the (carrier of the) largest subcoalgebra of HC.

•

�

P is the largest endomorphism invariant subobject
of UHC, that is:
• For every h :HC //HC , ∃h

�

P ≤

�

P ;
• If, for every h :HC //HC , ∃hQ ≤ Q, then Q ≤ P .
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The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

� is an S4 necessity operator.

• If P ` Q then �

P `

�

Q;

•

�

P ` P ;

•

�

P `

� �

P ;

•

�

(P → Q) `

�

P →
�

Q;
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The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

� is an S4 necessity operator.

• If P ` Q then �

P `

�

Q;

•

�

P ` P ;

•

�

P `

� �

P ;

•

�

(P → Q) `

�

P →
�

Q;

If Γ preserves pullbacks of S-morphisms, then so is � .
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The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

Theorem (The invariance theorem). Let ϕ be a
coequation over C. For any coequation ψ over C,
Mod(ϕ) |= ψ iff

� �

ϕ ≤ ψ.
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The invariance theorem

�

P =
∨

{U〈A, α〉 // //UHC | 〈A, α〉 ∈ SubCΓ
(HC)}

�

P =
∨

{Q // //UHC | ∀h :HC //HC .∃hQ ≤ P}

Theorem (The invariance theorem). Let ϕ be a
coequation over C. For any coequation ψ over C,
Mod(ϕ) |= ψ iff

� �

ϕ ≤ ψ.

In other words, � �

P is the least coequation satisfied by

Mod(P ). It can be regarded as a measure of the “coequa-

tional commitment” of P .
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A sound rule

An inference rule
ϕ1 . . . ϕn

ψ is sound just in case,

whenever 〈A, α〉 |= ϕ1, . . . , 〈A, α〉 |= ϕn, then
〈A, α〉 |= ψ.

Theorem.
∧

-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤ ϕi . But we know Im(p) ≤
∧

ϕi ≤ ϕi .
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A sound rule

An inference rule
ϕ1 . . . ϕn

ψ is sound just in case,

whenever 〈A, α〉 |= ϕ1, . . . , 〈A, α〉 |= ϕn, then
〈A, α〉 |= ψ.

Theorem. The rule

∧
ϕi

∧
-E

ϕi

is sound.

Theorem.
∧

-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤ ϕi . But we know Im(p) ≤
∧

ϕi ≤ ϕi .
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A sound rule
Theorem.

∧
-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤

�

ϕi

�

.

But we know Im(p) ≤
∧

ϕi ≤ ϕi .

A
p // UHC

�
ϕi

�
OO

OO
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A sound rule
Theorem.

∧
-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤

�

ϕi

�

.

But we know Im(p) ≤
∧

ϕi ≤ ϕi .

A
p // UHC

� ∧
ϕi

�

// //

::

::uuuuuuuu
�

ϕi

�

OO

OO
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A sound rule
Theorem.

∧
-E is sound.

Proof. Suppose 〈A, α〉 |=
∧

ϕi and p :〈A, α〉 //HC . We must

show that Im(p) ≤

�

ϕi

�

. But we know Im(p) ≤

� ∧
ϕi

�
≤

�

ϕi

�

.

A
p //

��

UHC

� ∧
ϕi

�

// //

::

::uuuuuuuu
�

ϕi

�

OO

OO

A complete deductive calculus for (implications of) coequations – p.22/30



A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

If Im(p :〈A, α〉 //HC ) ≤

�

ϕi

�

for each i ∈ I , then

Im(p) ≤
∧ �

ϕi

�

.
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

If Im(p :〈A, α〉 //HC ) ≤

�

ϕ

�

, then Im(p) ≤

� �

ϕ

�

(because Im(p) is a subcoalgebra contained in ϕ).
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

Here, Sub applies for every Γ-homomorphism
h :HC //HC .
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

Let p :HC //HC be given.

Im(p) ≤ h∗

�

ϕ

�

iff ∃h Im(p) ≤

�

ϕ

�

.
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

Let p :HC //HC be given.

Im(p) ≤ h∗

�

ϕ

�

iff Im(h ◦ p) ≤

�

ϕ

�

.
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

Let p :HC //HC be given.

Im(p) ≤ h∗

�

ϕ

�

iff Im(h ◦ p) ≤

�

ϕ

�

.

Hence, if for every q :HC //HC , Im(q) ≤

�

ϕ

�

, then
Im(p) ≤ h∗

�

ϕ

�

.
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

ϕ

�

ϕ

�

=

�

ψ

�

DSR
ψ
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

ϕ

�

ϕ

�

=

�

ψ

�

DSR
ψ

We call this rule DSR for Damn Semantic Rule. It is a
damn shame that we’ve had to include such an ugly rule.
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

ϕ

�

ϕ

�

=

�

ψ

�

DSR
ψ

We need this rule (along with
∧

-E) to ensure that the

deductive closure of S is closed upwards, so if

�

ϕ

�

≤

�

ψ

�

,
then ϕ ` ψ.
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

ϕ

�

ϕ

�

=

�

ψ

�

DSR
ψ

Maybe, we can replace this semantic rule with a rule
ϕ ϕ ` ψ

ψ
where ϕ ` ψ is proven in an appropriate logic

for Sub(UHC).
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A coequational calculus
The following rules are sound.

∧
ϕi

∧
-E

ϕi

{ϕi}i∈I
∧

-I∧
ϕi

ϕ � -I�

ϕ

ϕ
Sub

ϕ(h(x))

ϕ

�

ϕ

�

=

�

ψ

�

DSR
ψ

Let S ⊆ LCoeq. Let Ded(S) denote the deductive closure of
S under these rules. We see

Ded(S) ⊆ Th Mod(S).
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

A complete deductive calculus for (implications of) coequations – p.25/30



A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∃h

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤

�

ϕ

�

.
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�
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∧
{h∗

�

ϕ

�
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�
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ h∗

�

ϕ

�

.

⊆: It suffices to show that for all k :HC //HC ,

� �
ϕ

�

≤ k∗

�

ϕ

�

.
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ h∗

�

ϕ

�

.

⊆: It suffices to show that for all k :HC //HC ,

∃k

� �

ϕ

�

≤

�

ϕ

�

.
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A lemma

Lemma.

� �

ϕ

�

=
∧

{h∗

�

ϕ

�

| h :HC //HC}.

Proof. Recall

� �

ϕ

�

=
∨
{P | ∀h :HC //HC .∃hP ≤

�

ϕ

�

}.

⊇: It suffices to show that for all k :HC //HC ,

∧
{h∗

�

ϕ

�

| h :HC //HC } ≤ h∗

�

ϕ

�

.

⊆: It suffices to show that for all k :HC //HC ,

∃k

� �

ϕ

�

≤

�

ϕ

�

.

But,

� �

ϕ

�

is invariant, so ∃k

� �

ϕ

�

≤

� �

ϕ

�

≤ ϕ.
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then

ϕ ∈ Ded(S), i.e., ThMod(S) ⊆ Ded(S).
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Let ψ =
∧

S.
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
Sub

{ψ(h(x)) | h :HC //HC }
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
Sub

{ψ(h(x)) | h :HC //HC } ∧
-I∧

{ψ(h(x)) | h :HC //HC }
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Let ψ =
∧

S.

S ∧
-I

ψ
Sub

{ψ(h(x)) | h :HC //HC } ∧
-I∧

{ψ(h(x)) | h :HC //HC } �

-I

�

∧
{ψ(h(x)) | h :HC //HC }
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. So, we see that S `

�

∧
{ψ(h(x)) | h :HC //HC }. Now,

by the lemma,

� �

∧
{ψ(h(x)) | h :HC //HC }

�
=

� � �

ψ

�

,

and by the Invariance Theorem,

� � �
ψ

�
≤

�

ϕ

�

.
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Hence,

� �

∧
{ψ(h(x)) | h :HC //HC } ∧ ϕ

�

=

� � �
ψ

�
∧

�

ϕ

�

=

� � �

ψ

�

and so (by the damn semantic rule),

S `

�

∧
{ψ(h(x)) | h :HC //HC } ∧ ϕ

and thus S ` ϕ.
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A completeness theorem (of sorts)

Theorem. Let S ⊆ LCoeq. If Mod(S) |= ϕ, then ϕ ∈ Ded(S), i.e.,

Th Mod(S) ⊆ Ded(S).

Proof. Hence,

� �

∧
{ψ(h(x)) | h :HC //HC } ∧ ϕ

�

=

� � �
ψ

�
∧

�

ϕ

�

=

� � �

ψ

�

and so (by the damn semantic rule),

S `

�

∧
{ψ(h(x)) | h :HC //HC } ∧ ϕ

and thus S ` ϕ.

Note: We used
∧

-E and DSR only to show that if � �

ψ ∈ S, then

ϕ ∈ Ded(S).
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

� -I
ϕ⇒

�

ϕ
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

� -I
ϕ⇒

�

ϕ

(∃x(ϕ(x) ∧ h(x) = y)) ⇒ ψ
Sub

ϕ⇒ ψ(h(x))
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

� -I
ϕ⇒

�

ϕ

(∃x(ϕ(x) ∧ h(x) = y)) ⇒ ψ
Sub

ϕ⇒ ψ(h(x))

ϕ⇒ ψ ψ ⇒ ϑ
Cut

ϕ⇒ ϑ
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An implicational calculus
The following rules are sound.

ϕ⇒
∧

ψi
∧

-E
ϕ⇒ ψi

{ϕ⇒ ψi}i∈I
∧

-I
ϕ⇒

∧
ψi

� -I
ϕ⇒

�

ϕ

(∃x(ϕ(x) ∧ h(x) = y)) ⇒ ψ
Sub

ϕ⇒ ψ(h(x))

ϕ⇒ ψ ψ ⇒ ϑ
Cut

ϕ⇒ ϑ

ϕ⇒ ψ
�

ψ

�

=

�

ϑ

�

DSR
ϕ⇒ ϑ

Damn semantic rule!
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Sketch of completeness

1. Define two operators Sub(UHC) // Sub(UHC):

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}
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1. Define two operators Sub(UHC) // Sub(UHC):

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS ϕ =
∧

{ψ | Mod(S) |= ϕ⇒ ψ}
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Sketch of completeness

1. Define two operators Sub(UHC) // Sub(UHC):

consS ϕ =
∧

{ψ | ϕ⇒ ψ ∈ S}

entS ϕ =
∧

{ψ | Mod(S) |= ϕ⇒ ψ}

Note:

Mod(S) = Mod({ϕ⇒ consS ϕ | ϕ ∈ LCoeq})

= Mod({ϕ⇒ entS ϕ | ϕ ∈ LCoeq})

Subgoal: Show consDed(S) = entS .
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Sketch of completeness

1. Define two operators Sub(UHC) // Sub(UHC):

2. Show that entS is the greatest suboperator of �

◦ consS such

that:

• entS is a comonad (deflationary, idempotent, monotone);

• entS is endomorphism invariant – for all h :HC //HC ,

∃h ◦ entS ≤ entS ◦∃h.
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Sketch of completeness

1. Define two operators Sub(UHC) // Sub(UHC):

2. Show that entS is the greatest EIEIO (Endomorphism Invariant

Interior Operator).
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Sketch of completeness

1. Define two operators Sub(UHC) // Sub(UHC):

2. Show that entS is the greatest EIEIO.

3. Show that if S is deductively closed, consS is EIEIO. Hence,

consS = entS .
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Sketch of completeness

1. Define two operators Sub(UHC) // Sub(UHC):

2. Show that entS is the greatest EIEIO.

3. Show that if S is deductively closed, consS is EIEIO. Hence,

consS = entS .

4. Imp Mod(S) = {ϕ⇒ ψ | ψ ≥ entS ϕ}. Use DSR and
∧

-E to

show that Ded(S) = Imp Mod(S).
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