A complete deductive calculus for (implications of) coequations

Jesse Hughes
jesseh@cs.kun.nl

University of Nijmegen

Outline

I. Preliminaries

Outline

I. Preliminaries

II. Quasi-covarieties and covarieties

Outline

I. Preliminaries

II. Quasi-covarieties and covarieties

III. Coequations

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Coalgebras

Given a functor $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$, a Γ-coalgebra is a pair

$$
\langle C, \gamma\rangle
$$

where $C \in \mathcal{C}$ and $\gamma: C \rightarrow \Gamma C$.

Coalgebras

Given a functor $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$, a Γ-coalgebra is a pair

$$
\langle C, \gamma\rangle,
$$

where $C \in \mathcal{C}$ and $\gamma: C \rightarrow \Gamma C$. A Γ-morphism is a commutative square, as in

Coalgebras

Given a functor $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$, a Γ-coalgebra is a pair

$$
\langle C, \gamma\rangle,
$$

where $C \in \mathcal{C}$ and $\gamma: C \rightarrow \Gamma C$. A Γ-morphism is a commutative square, as in

The category of Γ-coalgebras and their homomorphisms is denoted \mathcal{C}_{Γ}.

Factorization systems

A factorization system for \mathcal{C} consists of two collections of arrows, \mathcal{H} and \mathcal{S}, satisfying the following conditions.

Factorization systems

A factorization system for \mathcal{C} consists of two collections of arrows, \mathcal{H} and \mathcal{S}, satisfying the following conditions.

- Every isomorphism is in \mathcal{H} and \mathcal{S};

Factorization systems

A factorization system for \mathcal{C} consists of two collections of arrows, \mathcal{H} and \mathcal{S}, satisfying the following conditions.

- Every isomorphism is in \mathcal{H} and \mathcal{S};
- \mathcal{H} and \mathcal{S} are closed under composition;

Factorization systems

A factorization system for \mathcal{C} consists of two collections of arrows, \mathcal{H} and \mathcal{S}, satisfying the following conditions.

- Every isomorphism is in \mathcal{H} and \mathcal{S};
- \mathcal{H} and \mathcal{S} are closed under composition;
- \mathcal{H} and \mathcal{S} satisfy the diagonal fill-in property, namely, for every commutative square

where $e \in \mathcal{H}$ and $m \in \mathcal{S}$, there is a unique arrow f, as shown, making each triangle commute ;

Factorization systems

A factorization system for \mathcal{C} consists of two collections of arrows, \mathcal{H} and \mathcal{S}, satisfying the following conditions.

- Every isomorphism is in \mathcal{H} and \mathcal{S};
- \mathcal{H} and \mathcal{S} are closed under composition;
- \mathcal{H} and \mathcal{S} satisfy the diagonal fill-in property;
- every arrow f factors as $f=m \circ e$, where $e \in \mathcal{H}$ and $m \in \mathcal{S}$;

Factorization systems

- every arrow f factors as $f=m \circ e$, where $e \in \mathcal{H}$ and $m \in \mathcal{S}$;

If \mathcal{C} has a factorization system, then any arrow $f: A \rightarrow B$ can be factored uniquely up to isomorphism thus.

Factorization systems

every arrow f factors as $f=m \circ e$, where $e \in \mathcal{H}$ and $m \in \mathcal{S}$;

For each $C \in \mathcal{C}$, define

$$
\operatorname{Sub}(C)=\{j \in \mathcal{S} \mid \operatorname{cod}(j)=C\} / \cong .
$$

Factorization systems

- every arrow f factors as $f=m \circ e$, where $e \in \mathcal{H}$ and $m \in \mathcal{S}$;

For each $C \in \mathcal{C}$, define

$$
\operatorname{Sub}(C)=\{j \in \mathcal{S} \mid \operatorname{cod}(j)=C\} / \cong .
$$

\mathcal{C} is \mathcal{S}-well-powered if, for every $C \in \mathcal{C}, \operatorname{Sub}(C)$ is a set.

Factorization systems

every arrow f factors as $f=m \circ e$, where $e \in \mathcal{H}$ and $m \in \mathcal{S}$;

For each $C \in \mathcal{C}$, define

$$
\operatorname{Sub}(C)=\{j \in \mathcal{S} \mid \operatorname{cod}(j)=C\} / \cong .
$$

Each $h: C \rightarrow D$ induces a morphism $\exists_{h}: \operatorname{Sub}(C) \rightarrow \operatorname{Sub}(D)$ by $\exists_{h}(A \stackrel{i}{\rightarrow} C)=\operatorname{Im}(i \circ h)$.

$$
\stackrel{A}{A} \underset{\downarrow}{\bullet} \exists_{h} A
$$

Factorization systems for coalgebras

Let $\langle\mathcal{H}, \mathcal{S}\rangle$ be a factorization system and suppose that $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$ preserves \mathcal{S}-morphisms (i.e., if $i \in \mathcal{S}$, then $\Gamma i \in \mathcal{S})$.

Factorization systems for coalgebras

Let $\langle\mathcal{H}, \mathcal{S}\rangle$ be a factorization system and suppose that $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$ preserves \mathcal{S}-morphisms. Then the pair $\left\langle U^{-1}(\mathcal{H}), U^{-1}(\mathcal{S})\right\rangle$ form a factorization system for \mathcal{C}_{Γ}.

Factorization systems for coalgebras

Let $\langle\mathcal{H}, \mathcal{S}\rangle$ be a factorization system and suppose that $\Gamma: \mathcal{C} \rightarrow \mathcal{C}$ preserves \mathcal{S}-morphisms. Then the pair $\left\langle U^{-1}(\mathcal{H}), U^{-1}(\mathcal{S})\right\rangle$ form a factorization system for \mathcal{C}_{Γ}.
In other words, every Γ-homomorphism $f:\langle A, \alpha\rangle \rightarrow\langle B, \beta\rangle$ factors uniquely as in

where p and i are Γ-homomorphisms.

Cofree coalgebras

Let $\langle D, \delta\rangle$ be given, together with a C-coloring $\varepsilon_{C}: D \rightarrow C$ of D. We say that $\langle D, \delta\rangle$ is cofree over C just in case, for every coalgebra $\langle A, \alpha\rangle$ and every coloring $p: A \rightarrow C$, there is a unique homomorphism $\tilde{p}:\langle A, \alpha\rangle \rightarrow\langle D, \delta\rangle$ such that the diagram below commutes.

Cofree coalgebras

Let $\langle D, \delta\rangle$ be given, together with a C-coloring $\varepsilon_{C}: D \rightarrow C$ of D.

For any coloring $p: A \rightarrow C$, there is a Γ-homomorphism $\widetilde{p}:\langle A, \alpha\rangle \rightarrow\langle D, \delta\rangle$ "consistent" with p.

Cofree coalgebras

Let $\langle D, \delta\rangle$ be given, together with a C-coloring $\varepsilon_{C}: D \rightarrow C$ of D.

If, for every object $C \in \mathcal{C}$, there is a cofree $\langle D, \delta\rangle$ over C, then we have an adjunction

\mathcal{S}-injectives

An object $C \in \mathcal{C}$ is \mathcal{S}-injective if, for all $j: A \gtrdot B$ in \mathcal{S}, and all $f: A \rightarrow C$, there is a (not necessarily unique) extension $g: B \rightarrow C$ making the diagram below commute.

\mathcal{S}-injectives

An object $C \in \mathcal{C}$ is \mathcal{S}-injective if, for all $j: A>B$ in \mathcal{S}, and all $f: A \rightarrow C$, there is a (not necessarily unique) extension $g: B \rightarrow C$ making the diagram below commute.

\mathcal{C} has enough \mathcal{S}-injectives iff for every $A \in \mathcal{C}$, there is an \mathcal{S}-injective $C \in \mathcal{C}$ and a \mathcal{S}-morphism $A \nrightarrow C$.

\mathcal{S}-injectives

Theorem. If $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H and \mathcal{C} has enough \mathcal{S}-injectives, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

\mathcal{S}-injectives

Theorem. If $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H and \mathcal{C} has enough \mathcal{S}-injectives, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

Proof. Let $\langle A, \alpha\rangle$ be given and $A \leq C$, where C is \mathcal{S}-injective. Then $\langle A, \alpha\rangle \leq H C$. It suffices to show $H C$ is $U^{-1} \mathcal{S}$-injective.

\mathcal{S}-injectives

Theorem. If $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H and \mathcal{C} has enough \mathcal{S}-injectives, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

Proof. Let $\langle A, \alpha\rangle$ be given and $A \leq C$, where C is \mathcal{S}-injective. Then $\langle A, \alpha\rangle \leq H C$. It suffices to show $H C$ is $U^{-1} \mathcal{S}$-injective. Let $j:\langle B, \beta\rangle>\langle D, \delta\rangle$ and $f:\langle B, \beta\rangle \rightarrow H C$ be given.

\mathcal{S}-injectives

Theorem. If $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H and \mathcal{C} has enough \mathcal{S}-injectives, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

Proof. Let $\langle A, \alpha\rangle$ be given and $A \leq C$, where C is \mathcal{S}-injective. Then $\langle A, \alpha\rangle \leq H C$. It suffices to show $H C$ is $U^{-1} \mathcal{S}$-injective. Let $j:\langle B, \beta\rangle>\langle D, \delta\rangle$ and $f:\langle B, \beta\rangle \rightarrow H C$ be given.

\mathcal{S}-injectives

Theorem. If $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H and \mathcal{C} has enough \mathcal{S}-injectives, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

Proof. Let $\langle A, \alpha\rangle$ be given and $A \leq C$, where C is \mathcal{S}-injective. Then $\langle A, \alpha\rangle \leq H C$. It suffices to show $H C$ is $U^{-1} \mathcal{S}$-injective. Let $j:\langle B, \beta\rangle \rightarrow\langle D, \delta\rangle$ and $f:\langle B, \beta\rangle \rightarrow H C$ be given. By the injectivity of C, we get a map $D \rightarrow C$ as shown ...

\mathcal{S}-injectives

Theorem. If $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H and \mathcal{C} has enough \mathcal{S}-injectives, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

Proof. Let $\langle A, \alpha\rangle$ be given and $A \leq C$, where C is \mathcal{S}-injective. Then $\langle A, \alpha\rangle \leq H C$. It suffices to show $H C$ is $U^{-1} \mathcal{S}$-injective. Let $j:\langle B, \beta\rangle>\langle D, \delta\rangle$ and $f:\langle B, \beta\rangle \rightarrow H C$ be given. By the injectivity of C, we get a map $D \rightarrow C$ as shown and hence, by adjoint transposition, a homomorphism $\langle D, \delta\rangle \rightarrow H C$.

About \mathcal{S}-meets

Recall that $\operatorname{Sub}(C)$ denotes the poset of isomorphism classes of \mathcal{S}-morphisms into C.
In any factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$, the \mathcal{S}-morphisms are stable under pullbacks.

Thus, if \mathcal{C} has pullbacks of \mathcal{S}-morphisms, then each $h: B \rightarrow C$ induces a functor $h^{*}: \operatorname{Sub}(C) \rightarrow \operatorname{Sub}(B)$.

About \mathcal{S}-meets

In any factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$, the \mathcal{S}-morphisms are stable under pullbacks. This gives one a notion of \wedge for $\operatorname{Sub}(C), \wedge: \operatorname{Sub}(C) \times \operatorname{Sub}(C) \rightarrow \operatorname{Sub}(C)$.

About \mathcal{S}-meets

In any factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$, the \mathcal{S}-morphisms are stable under generalized pullbacks.

About \mathcal{S}-meets

In any factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$, the \mathcal{S}-morphisms are stable under generalized pullbacks. Assuming that \mathcal{C} has such limits, this gives one a notion of \bigwedge_{I} for $\operatorname{Sub}(C)$, $\bigwedge_{I}: \operatorname{Sub}(C)^{I} \rightarrow \operatorname{Sub}(C)$.

Structural summary

- If \mathcal{C} has coproducts, then so does \mathcal{C}_{Γ}.

Structural summary

- If \mathcal{C} has coproducts, then so does \mathcal{C}_{Γ}.
- If \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$ and Γ preserves \mathcal{S}-morphisms, then \mathcal{C}_{Γ} has a factorization system $\left\langle U^{-1} \mathcal{H}, U^{-1} \mathcal{S}\right\rangle$.

Structural summary

- If \mathcal{C} has coproducts, then so does \mathcal{C}_{Γ}.
- If \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$ and Γ preserves \mathcal{S}-morphisms, then \mathcal{C}_{Γ} has a factorization system $\left\langle U^{-1} \mathcal{H}, U^{-1} \mathcal{S}\right\rangle$.
- If \mathcal{C} is \mathcal{S}-well-powered, then \mathcal{C}_{Γ} is $U^{-1} \mathcal{S}$-well-powered.

Structural summary

- If \mathcal{C} has coproducts, then so does \mathcal{C}_{Γ}.
- If \mathcal{C} has a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$ and Γ preserves \mathcal{S}-morphisms, then \mathcal{C}_{Γ} has a factorization system $\left\langle U^{-1} \mathcal{H}, U^{-1} \mathcal{S}\right\rangle$.
- If \mathcal{C} is \mathcal{S}-well-powered, then \mathcal{C}_{Γ} is $U^{-1} \mathcal{S}$-well-powered.
- If \mathcal{C} has enough \mathcal{S}-injectives and $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint, then \mathcal{C}_{Γ} has enough $U^{-1} \mathcal{S}$-injectives.

Structural summary

Hereafter, we assume that \mathcal{C} has all coproducts, a factorization system $\langle\mathcal{H}, \mathcal{S}\rangle$, enough \mathcal{S}-injectives and meets of \mathcal{S}-morphisms and is \mathcal{S}-well-powered, and that Γ-preserves \mathcal{S}-morphisms. We further assume that $U: \mathcal{C}_{\Gamma} \rightarrow \mathcal{C}$ has a right adjoint H.

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

Proliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Quasi-covarieties and covarieties

Let $\mathrm{V} \subseteq \mathcal{C}_{\Gamma}$. We define

$$
\begin{aligned}
\mathcal{H} \mathbf{V} & =\{\langle B, \beta\rangle \mid \exists \mathbf{V} \ni\langle C, \gamma\rangle \longrightarrow\langle B, \beta\rangle\} \\
\mathcal{S} \mathbf{V} & =\{\langle B, \beta\rangle \mid \exists\langle B, \beta\rangle \longrightarrow\langle C, \gamma\rangle \in \mathbf{V}\} \\
\Sigma \mathbf{V} & =\left\{\coprod\left\langle C_{i}, \gamma_{i}\right\rangle \mid\left\langle C_{i}, \gamma_{i}\right\rangle \in \mathbf{V}\right\}
\end{aligned}
$$

Quasi-covarieties and covarieties

Let $\mathrm{V} \subseteq \mathcal{C}_{\Gamma}$. We define

$$
\begin{aligned}
\mathcal{H} \mathbf{V} & =\{\langle B, \beta\rangle \mid \exists \mathbf{V} \ni\langle C, \gamma\rangle \longrightarrow\langle B, \beta\rangle\} \\
\mathcal{S} \mathbf{V} & =\{\langle B, \beta\rangle \mid \exists\langle B, \beta\rangle \longrightarrow\langle C, \gamma\rangle \in \mathbf{V}\} \\
\Sigma \mathbf{V} & =\left\{\coprod\left\langle C_{i}, \gamma_{i}\right\rangle \mid\left\langle C_{i}, \gamma_{i}\right\rangle \in \mathbf{V}\right\}
\end{aligned}
$$

We say that \mathbf{V} is a quasi-covariety if $\mathbf{V} \subseteq \mathcal{H} \Sigma \mathbf{V}$.

Quasi-covarieties and covarieties

Let $\mathrm{V} \subseteq \mathcal{C}_{\Gamma}$. We define

$$
\begin{aligned}
\mathcal{H} \mathbf{V} & =\{\langle B, \beta\rangle \mid \exists \mathbf{V} \ni\langle C, \gamma\rangle \longrightarrow\langle B, \beta\rangle\} \\
\mathbf{S} \mathbf{V} & =\{\langle B, \beta\rangle \mid \exists\langle B, \beta\rangle \longrightarrow\langle C, \gamma\rangle \in \mathbf{V}\} \\
\Sigma \mathbf{V} & =\left\{\coprod\left\langle C_{i}, \gamma_{i}\right\rangle \mid\left\langle C_{i}, \gamma_{i}\right\rangle \in \mathbf{V}\right\}
\end{aligned}
$$

We say that \mathbf{V} is a quasi-covariety if $\mathbf{V} \subseteq \mathcal{H} \Sigma \mathbf{V}$. We say that \mathbf{V} is a covariety if $\mathbf{V} \subseteq \mathcal{S H} \sum \mathbf{V}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\mathrm{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.

A coequational language

Fix a \mathcal{S}-injective $C \in \mathcal{C}$. We define a simple language $\mathcal{L}_{\text {Coeq }}$ (properly, $\mathcal{L}_{\text {Coeq }}^{C}$).

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C):$

$$
\llbracket P \rrbracket=P
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C):$

$$
\llbracket \square \varphi \rrbracket=\square \llbracket \varphi \rrbracket
$$

(Definition of \square forthcoming!)

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \bigwedge \varphi_{i} \rrbracket=\bigwedge \llbracket \varphi_{i} \rrbracket
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \varphi(h(x)) \rrbracket=h^{*} \llbracket \varphi \rrbracket
$$

A coequational language

- For every P in $\operatorname{Sub}(U H C)$, we introduce an atomic proposition P in $\mathcal{L}_{\text {Coeq }}$, i.e., $\operatorname{Sub}(U H C) \subseteq \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$, then $\square \varphi \in \mathcal{L}_{\text {Coeq }}$.
- If $\left\{\varphi_{i}\right\}_{i \in I} \subseteq \mathcal{L}_{\text {Coeq }}$, then $\bigwedge_{I} \varphi_{i} \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\varphi(h(x)) \in \mathcal{L}_{\text {Coeq }}$.
- If $\varphi \in \mathcal{L}_{\text {Coeq }}$ and $h: H C \rightarrow H C$, then $\exists y(\varphi(y) \wedge h(y)=x)$ is in $\mathcal{L}_{\text {Coeq }}$.

We define an interpretation $\llbracket-\rrbracket: \mathcal{L}_{\text {Coeq }} \rightarrow \operatorname{Sub}(U H C)$:

$$
\llbracket \exists y(\varphi(y) \wedge h(y)=x) \rrbracket=\exists_{h} \llbracket \varphi \rrbracket
$$

Coequations

A coalgebra $\langle A, \alpha\rangle$ satisfies φ iff for every homomorphism $p:\langle A, \alpha\rangle \rightarrow H C$, we have $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$.

Coequations

A coalgebra $\langle A, \alpha\rangle$ satisfies φ iff for every homomorphism $p:\langle A, \alpha\rangle \rightarrow H C$, we have $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$. In other words, $\langle A, \alpha\rangle \models \varphi$ iff every $p:\langle A, \alpha\rangle \rightarrow H C$ factors through $\llbracket \varphi \rrbracket$.

Coequations

$\langle A, \alpha\rangle \models \varphi$ iff every $p:\langle A, \alpha\rangle \rightarrow H C$ factors through $\llbracket \varphi \rrbracket$.

$$
A \stackrel{p}{\longrightarrow} U \underset{\uparrow}{H}
$$

Homomorphisms $p:\langle A, \alpha\rangle \rightarrow H C$ correspond to colorings $\widetilde{p}: A \rightarrow C$. Thus, $\langle A, \alpha\rangle \models \varphi$ just in case, however we color A (via \widetilde{p}), the image of the corresponding homomorphism p lies in φ.

Example

The cofree coalgebra $H 2$

Example

Example

This coalgebra satisfies P.

Example

Under any coloring, the elements of the coalgebra map to elements of P.

Example

This coalgebra doesn't satisfy P.

Example

If we paint the circle red, it isn't mapped to an element of P.

An implicational language

Define $\mathcal{L}_{\text {Imp }}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every
$p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

An implicational language

Define $\mathcal{L}_{\mathrm{Imp}}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

This is not the same as $(\langle A, \alpha\rangle \not \models \varphi$ or $\langle A, \alpha\rangle \models \psi$). That would be true if either there is some p such that $\operatorname{Im}(p) \not \leq \llbracket \varphi \rrbracket$ or for all $p, \operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

An implicational language

Define $\mathcal{L}_{\text {Imp }}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

This is also not the same as $\langle A, \alpha\rangle \models \neg \varphi \vee \psi$ (if $\mathrm{Sub}(U H C)$ is a Heyting algebra).

An implicational language

Define $\mathcal{L}_{\text {Imp }}=\left\{\varphi \Rightarrow \psi \mid \varphi, \psi \in \mathcal{L}_{\text {Coeq }}\right\}$.
Say that $\langle A, \alpha\rangle \models \varphi \Rightarrow \psi$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{lm}(p) \leq \llbracket \varphi \rrbracket$, also $\operatorname{Im}(p) \leq \llbracket \psi \rrbracket$.

$$
A \xrightarrow{p} \underset{P}{U H C} \rightarrow A \xrightarrow{p} U H C
$$

Note:

$$
\langle A, \alpha\rangle \models \varphi \operatorname{iff}\langle A, \alpha\rangle \models \top \Rightarrow \varphi,
$$

where $T=(H C=H C)$.

Outline

Proliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

1. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

The Covariety Theorems

Given a class \mathbf{V} of coalgebras, define

$$
\begin{aligned}
\operatorname{Th}(\mathbf{V})= & \left\{\varphi \in \mathcal{L}_{\text {Coeq }}^{C} \mid \mathbf{V} \models \varphi, C \mathcal{S} \text {-injective }\right\} \\
\operatorname{Imp}(\mathbf{V})= & \left\{P \Rightarrow Q \in \mathcal{L}_{\text {Imp }}^{C} \mid \mathbf{V} \models P \Rightarrow Q, P, Q \leq U H C,\right. \\
& C \mathcal{S} \text {-injective }\}
\end{aligned}
$$

The Covariety Theorems

Given a class \mathbf{V} of coalgebras, define

$$
\begin{aligned}
\operatorname{Th}(\mathbf{V})= & \left\{\varphi \in \mathcal{L}_{\text {Coeq }}^{C} \mid \mathbf{V} \models \varphi, C \mathcal{S} \text {-injective }\right\} \\
\operatorname{Imp}(\mathbf{V})= & \left\{P \Rightarrow Q \in \mathcal{L}_{\text {Imp }}^{C} \mid \mathbf{V} \models P \Rightarrow Q, P, Q \leq U H C,\right. \\
& C \mathcal{S} \text {-injective }\} .
\end{aligned}
$$

Given a collection S of (implications between) coequations, define

$$
\operatorname{Mod}(S)=\{\langle A, \alpha\rangle \mid\langle A, \alpha\rangle \models S\} .
$$

The Covariety Theorems

Theorem (The "co-Birkhoff" theorem). For any V,

$\mathcal{S H} \Sigma \mathbf{V}=\operatorname{Mod} \operatorname{Th}(\mathbf{V})$.

The Covariety Theorems

Theorem (The "co-Birkhoff" theorem). For any V,

$$
\mathcal{S H} \Sigma \mathbf{V}=\operatorname{Mod} \operatorname{Th}(\mathbf{V})
$$

Theorem (The co-quasivariety theorem). For any \mathbf{V},

$$
\mathcal{H} \Sigma \mathbf{V}=\operatorname{Mod} \operatorname{Imp}(\mathbf{V})
$$

Outline

1. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III.
Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Birkhoff's completeness theorem

So much for the formal dual of the variety theorem. What about the formal dual of Birkhoff's completeness theorem?

Birkhoff's completeness theorem

So much for the formal dual of the variety theorem. What about the formal dual of Birkhoff's completeness theorem?

Let S be a set of equations for an algebraic signature Σ. Let $\operatorname{Ded}(S)$ denote the deductive closure of S under the usual equational logic.

Birkhoff's completeness theorem

So much for the formal dual of the variety theorem. What about the formal dual of Birkhoff's completeness theorem?

Let S be a set of equations for an algebraic signature Σ. Let $\operatorname{Ded}(S)$ denote the deductive closure of S under the usual equational logic.

Theorem (Birkhoff's completeness theorem). For any set S of equations,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

Birkhoff's completeness theorem

So much for the formal dual of the variety theorem. What about the formal dual of Birkhoff's completeness theorem?

Let S be a set of equations for an algebraic signature Σ. Let $\operatorname{Ded}(S)$ denote the deductive closure of S under the usual equational logic.

Theorem (Birkhoff's completeness theorem). For any set S of equations,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

Here, $\operatorname{Th}(\mathbf{V})$ denotes the equational theory of a class of algebras.

Birkhoff's completeness theorem

Theorem (Birkhoff's completeness theorem). For any set S of equations,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

Compare this to the variety theorem, namely for every V,

$$
\mathcal{H S P V}=\operatorname{Mod} \operatorname{Th}(\mathbf{V})
$$

Birkhoff's completeness theorem

Theorem (Birkhoff's completeness theorem). For any set S of equations,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

Main goal Find a logic on sets of coequations such that for any set S of coequations over C,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

Birkhoff's completeness theorem

Theorem (Birkhoff's completeness theorem). For any set S of equations,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

Main goal Find a logic on sets of coequations such that for any set S of coequations over C,

$$
\operatorname{Ded}(S)=\operatorname{Th} \operatorname{Mod}(S)
$$

First step Find the formal dual to Birkhoff's completeness theorem.

The invariance theorem

Define interior operators
$\square, \boxtimes: \operatorname{Sub}(U H C) \longrightarrow \operatorname{Sub}(U H C)$
by

$$
\begin{aligned}
& \square P=\bigvee\left\{U\langle A, \alpha\rangle>U H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\} \\
& \square P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C \cdot \exists_{h} Q \leq P\right\}
\end{aligned}
$$

The invariance theorem

$$
\begin{aligned}
& \square P=\bigvee\left\{U\langle A, \alpha\rangle \longrightarrow U H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{C_{r}}(H C)\right\} \\
& \nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}
\end{aligned}
$$

- $\square P$ is the (carrier of the) largest subcoalgebra of $H C$.

The invariance theorem

$\square P=\bigvee\left\{U\langle A, \alpha\rangle>\longrightarrow H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\}$
$\nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}$

- $\square P$ is the (carrier of the) largest subcoalgebra of $H C$.
- $\square P$ is the largest endomorphism invariant subobject of $U H C$, that is:
- For every $h: H C \rightarrow H C, \exists_{h} \boxtimes P \leq \boxtimes P ;$

The invariance theorem

$\square P=\bigvee\left\{U\langle A, \alpha\rangle>\longrightarrow H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\}$
$\nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}$

- $\square P$ is the (carrier of the) largest subcoalgebra of $H C$.
- $\square P$ is the largest endomorphism invariant subobject of $U H C$, that is:
- For every $h: H C \rightarrow H C, \exists_{h} \boxtimes P \leq \nabla P$;
- If, for every $h: H C \rightarrow H C, \exists_{h} Q \leq Q$, then $Q \leq P$.

The invariance theorem

$\square P=\bigvee\left\{U\langle A, \alpha\rangle>\longrightarrow H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\}$
$\nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}$
\square is an $\mathbf{S 4}$ necessity operator.

- If $P \vdash Q$ then $\boxtimes P \vdash \nabla Q$;
- $\square P \vdash P$;
- $\boxtimes P \vdash \square \boxtimes P$;
- $\boxtimes(P \rightarrow Q) \vdash \boxtimes P \rightarrow \square Q$;

The invariance theorem

$\square P=\bigvee\left\{U\langle A, \alpha\rangle>\longrightarrow H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\}$
$\nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}$
\square is an $\mathbf{S 4}$ necessity operator.

- If $P \vdash Q$ then $\nabla P \vdash \nabla Q$;
- $\boxtimes P \vdash P$;
- $\boxtimes P \vdash \square \boxtimes P$;
- $\square(P \rightarrow Q) \vdash \nabla P \rightarrow \square Q$;

If Γ preserves pullbacks of \mathcal{S}-morphisms, then so is \square.

The invariance theorem

$\square P=\bigvee\left\{U\langle A, \alpha\rangle>\longrightarrow U C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\}$
$\nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}$

Theorem (The invariance theorem). Let φ be a coequation over C. For any coequation ψ over C, $\operatorname{Mod}(\varphi) \models \psi$ iff $\square \square \varphi \leq \psi$.

The invariance theorem

$\square P=\bigvee\left\{U\langle A, \alpha\rangle>\longrightarrow H C \mid\langle A, \alpha\rangle \in \operatorname{Sub}_{\mathcal{C}_{\Gamma}}(H C)\right\}$
$\nabla P=\bigvee\left\{Q \longrightarrow U H C \mid \forall h: H C \longrightarrow H C . \exists_{h} Q \leq P\right\}$

Theorem (The invariance theorem). Let φ be a coequation over C. For any coequation ψ over C, $\operatorname{Mod}(\varphi) \models \psi$ iff $\square \square \varphi \leq \psi$.

In other words, $\square \square P$ is the least coequation satisfied by $\operatorname{Mod}(P)$. It can be regarded as a measure of the "coequational commitment" of P.

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III.
Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

I. Preliminaries
II.
Quasi-covarieties and covarieties
III.
Coequations
The Covariety Theorems
The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

A sound rule

An inference rule $\frac{\varphi_{1} \ldots \varphi_{n}}{\psi}$ is sound just in case, whenever $\langle A, \alpha\rangle \models \varphi_{1}, \ldots,\langle A, \alpha\rangle \models \varphi_{n}$, then $\langle A, \alpha\rangle \models \psi$.

A sound rule

An inference rule $\frac{\varphi_{1} \ldots \varphi_{n}}{\psi}$ is sound just in case, whenever $\langle A, \alpha\rangle \models \varphi_{1}, \ldots,\langle A, \alpha\rangle \models \varphi_{n}$, then $\langle A, \alpha\rangle \models \psi$.
Theorem. The rule $\frac{\bigwedge_{i}}{\varphi_{i}} \bigwedge-E$ is sound.

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$.

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$.

A sound rule

Theorem. $\bigwedge-E$ is sound.
Proof. Suppose $\langle A, \alpha\rangle \models \bigwedge \varphi_{i}$ and $p:\langle A, \alpha\rangle \rightarrow H C$. We must show that $\operatorname{Im}(p) \leq \llbracket \varphi_{i} \rrbracket$. But we know $\operatorname{Im}(p) \leq \llbracket \bigwedge \varphi_{i} \rrbracket \leq \llbracket \varphi_{i} \rrbracket$.

A coequational calculus

The following rules are sound.
$\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge$ - E

A coequational calculus

The following rules are sound.

$$
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} \quad \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I}
$$

If $\operatorname{Im}(p:\langle A, \alpha\rangle \rightarrow H C) \leq \llbracket \varphi_{i} \rrbracket$ for each $i \in I$, then $\operatorname{Im}(p) \leq \bigwedge \llbracket \varphi_{i} \rrbracket$.

A coequational calculus

The following rules are sound.

$$
\begin{aligned}
& \frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} \quad \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
& \frac{\varphi}{\square \varphi} \square-\mathrm{I}
\end{aligned}
$$

If $\operatorname{Im}(p:\langle A, \alpha\rangle \rightarrow H C) \leq \llbracket \varphi \rrbracket$, then $\operatorname{Im}(p) \leq \square \llbracket \varphi \rrbracket$ (because $\operatorname{Im}(p)$ is a subcoalgebra contained in φ).

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \mathrm{Sub}
\end{array}
$$

Here, Sub applies for every Γ-homomorphism $h: H C \rightarrow H C$.

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \operatorname{Sub}
\end{array}
$$

Let $p: H C \rightarrow H C$ be given.

$$
\operatorname{Im}(p) \leq h^{*} \llbracket \varphi \rrbracket \operatorname{iff} \exists_{h} \operatorname{Im}(p) \leq \llbracket \varphi \rrbracket .
$$

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \operatorname{Sub}
\end{array}
$$

Let $p: H C \rightarrow H C$ be given.

$$
\operatorname{Im}(p) \leq h^{*} \llbracket \varphi \rrbracket \text { iff } \operatorname{Im}(h \circ p) \leq \llbracket \varphi \rrbracket .
$$

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \mathrm{Sub}
\end{array}
$$

Let $p: H C \rightarrow H C$ be given.

$$
\operatorname{Im}(p) \leq h^{*} \llbracket \varphi \rrbracket \text { iff } \operatorname{Im}(h \circ p) \leq \llbracket \varphi \rrbracket .
$$

Hence, if for every $q: H C \rightarrow H C, \operatorname{lm}(q) \leq \llbracket \varphi \rrbracket$, then $\operatorname{lm}(p) \leq h^{*} \llbracket \varphi \rrbracket$.

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge \text {-E } & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge \text {-I } \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \mathrm{Sub} \\
\frac{\varphi}{\varphi} \quad \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket \\
\psi & \mathrm{DSR}
\end{array}
$$

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \operatorname{Sub} \\
\frac{\varphi}{\varphi} \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket \\
\psi &
\end{array}
$$

We call this rule DSR for Damn Semantic Rule. It is a damn shame that we've had to include such an ugly rule.

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \operatorname{Sub} \\
\frac{\varphi}{\frac{\varphi}{} \quad \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket} \mathrm{DSR}^{2} &
\end{array}
$$

We need this rule (along with $\bigwedge-\mathrm{E}$) to ensure that the deductive closure of S is closed upwards, so if $\llbracket \varphi \rrbracket \leq \llbracket \psi \rrbracket$, then $\varphi \vdash \psi$.

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \operatorname{Sub} \\
\frac{\varphi}{\varphi} \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket \\
\psi &
\end{array}
$$

Maybe, we can replace this semantic rule with a rule $\frac{\varphi \quad \varphi \vdash \psi}{\psi}$ where $\varphi \vdash \psi$ is proven in an appropriate logic for $\operatorname{Sub}(U H C)$.

A coequational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\bigwedge \varphi_{i}}{\varphi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi_{i}\right\}_{i \in I}}{\bigwedge \varphi_{i}} \bigwedge-\mathrm{I} \\
\frac{\varphi}{\square \varphi} \square-\mathrm{I} & \frac{\varphi}{\varphi(h(x))} \operatorname{Sub} \\
\frac{\varphi}{\varphi} \llbracket \varphi \rrbracket=\llbracket \psi \rrbracket \\
\psi &
\end{array}
$$

Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. Let $\operatorname{Ded}(S)$ denote the deductive closure of S under these rules. We see

$$
\operatorname{Ded}(S) \subseteq \operatorname{Th} \operatorname{Mod}(S)
$$

Outline

I. Preliminaries
II.
Quasi-covarieties and covarieties
III.
Coequations
The Covariety Theorems
The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

I. Preliminaries

II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
〇: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\exists_{h} \bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
〇: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq h^{*} \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\nabla \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
?: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq h^{*} \llbracket \varphi \rrbracket .
$$

\subseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\boxtimes \llbracket \varphi \rrbracket \leq k^{*} \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\nabla \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
〇: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq h^{*} \llbracket \varphi \rrbracket .
$$

\subseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\exists_{k} \boxtimes \llbracket \varphi \rrbracket \leq \llbracket \varphi \rrbracket .
$$

A lemma

Lemma.

$$
\boxtimes \llbracket \varphi \rrbracket=\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} .
$$

Proof. Recall $\boxtimes \llbracket \varphi \rrbracket=\bigvee\left\{P \mid \forall h: H C \rightarrow H C . \exists_{h} P \leq \llbracket \varphi \rrbracket\right\}$.
?: It suffices to show that for all $k: H C \rightarrow H C$,

$$
\bigwedge\left\{h^{*} \llbracket \varphi \rrbracket \mid h: H C \longrightarrow H C\right\} \leq h^{*} \llbracket \varphi \rrbracket .
$$

\subseteq : It suffices to show that for all $k: H C \rightarrow H C$,

$$
\exists_{k} \boxtimes \llbracket \varphi \rrbracket \leq \llbracket \varphi \rrbracket .
$$

But, $\boxtimes \llbracket \varphi \rrbracket$ is invariant, so $\exists_{k} \boxtimes \llbracket \varphi \rrbracket \leq \boxtimes \llbracket \varphi \rrbracket \leq \varphi$.

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then
$\varphi \in \operatorname{Ded}(S)$, i.e., $\operatorname{Th} \operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., $\operatorname{Th} \operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. Let $\psi=\bigwedge S$.

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., $\operatorname{Th} \operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. Let $\psi=\bigwedge S$.

$$
\frac{S}{\psi} \bigwedge-\mathrm{I}
$$

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., $\operatorname{Th} \operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.
Proof. Let $\psi=\bigwedge S$.

$$
\frac{\frac{S}{\psi} \bigwedge-\mathrm{I}}{\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \text { Sub }
$$

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., $\operatorname{Th} \operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. Let $\psi=\bigwedge S$.

$$
\frac{\frac{S}{\psi} \bigwedge-\mathrm{I}}{\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \mathrm{Sub} \bigwedge_{\bigwedge \psi(h(x)) \mid h: H C \longrightarrow H C\}} \bigwedge-\mathrm{I}
$$

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., Th $\operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. Let $\psi=\bigwedge S$.

$$
\frac{\frac{S}{\psi} \bigwedge-\mathrm{I}}{\frac{\frac{S}{\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \mathrm{Sub}}{\bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\}} \bigwedge-\mathrm{I}} \underset{\square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\}}{\square-\mathrm{I}}
$$

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., Th $\operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. So, we see that $S \vdash \square \bigwedge\{\psi(h(x)) \mid h: H C \rightarrow H C\}$. Now, by the lemma,

$$
\llbracket \square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\} \rrbracket=\square \boxtimes \llbracket \psi \rrbracket,
$$

and by the Invariance Theorem, $\square \square \llbracket \psi \rrbracket \leq \llbracket \varphi \rrbracket$.

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., Th $\operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. Hence,
$\llbracket \square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\} \wedge \varphi \rrbracket=\square \square \llbracket \psi \rrbracket \wedge \llbracket \varphi \rrbracket=\square \square \llbracket \psi \rrbracket$ and so (by the damn semantic rule),

$$
S \vdash \square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\} \wedge \varphi
$$

and thus $S \vdash \varphi$.

A completeness theorem (of sorts)

Theorem. Let $S \subseteq \mathcal{L}_{\text {Coeq }}$. If $\operatorname{Mod}(S) \models \varphi$, then $\varphi \in \operatorname{Ded}(S)$, i.e., Th $\operatorname{Mod}(S) \subseteq \operatorname{Ded}(S)$.

Proof. Hence,
$\llbracket \square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\} \wedge \varphi \rrbracket=\square \square \llbracket \psi \rrbracket \wedge \llbracket \varphi \rrbracket=\square \square \llbracket \psi \rrbracket$ and so (by the damn semantic rule),

$$
S \vdash \square \bigwedge\{\psi(h(x)) \mid h: H C \longrightarrow H C\} \wedge \varphi
$$

and thus $S \vdash \varphi$.
Note: We used $\bigwedge-\mathrm{E}$ and DSR only to show that if $\square \boxtimes \psi \in S$, then $\varphi \in \operatorname{Ded}(S)$.

Outline

I. Preliminaries

II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

I. Preliminaries
II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

An implicational calculus

The following rules are sound.

$$
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E}
$$

An implicational calculus

The following rules are sound.

$$
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} \quad \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I}
$$

An implicational calculus

The following rules are sound.

$$
\begin{aligned}
& \frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} \quad \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I} \\
& \frac{\varphi \Rightarrow \square \varphi}{\varphi-\mathrm{I}}
\end{aligned}
$$

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I} \\
\frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \square \varphi} \square-\mathrm{I} & \frac{(u b}{\varphi \Rightarrow \psi(h(x))}
\end{array}
$$

An implicational calculus

The following rules are sound.

$$
\begin{array}{ll}
\frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge-\mathrm{E} & \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge \text {-I } \\
\frac{\varphi}{\varphi \Rightarrow \square \varphi} \square-\mathrm{I} & \frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \mathrm{Sub} \\
\frac{\varphi \Rightarrow \psi \quad \psi \Rightarrow \vartheta}{\varphi \Rightarrow \vartheta} \mathrm{Cut} &
\end{array}
$$

An implicational calculus

The following rules are sound.

$$
\begin{aligned}
& \frac{\varphi \Rightarrow \bigwedge \psi_{i}}{\varphi \Rightarrow \psi_{i}} \bigwedge \text {-E } \\
& \frac{\left\{\varphi \Rightarrow \psi_{i}\right\}_{i \in I}}{\varphi \Rightarrow \bigwedge \psi_{i}} \bigwedge-\mathrm{I} \\
& \overline{\varphi \Rightarrow \square \varphi} \square-\mathrm{I} \\
& \frac{\varphi \Rightarrow \psi \quad \psi \Rightarrow \vartheta}{\varphi \Rightarrow \vartheta} \text { Cut } \\
& \frac{(\exists x(\varphi(x) \wedge h(x)=y)) \Rightarrow \psi}{\varphi \Rightarrow \psi(h(x))} \text { Sub } \\
& \frac{\varphi \Rightarrow \psi \quad \llbracket \psi \rrbracket=\llbracket \vartheta \rrbracket}{\varphi \Rightarrow \vartheta} \mathrm{DSR}
\end{aligned}
$$

Damn semantic rule!

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:

$$
\operatorname{cons}_{S} \varphi=\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\}
$$

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:

$$
\begin{aligned}
\operatorname{cons}_{S} \varphi & =\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
\operatorname{ent}_{S} \varphi & =\bigwedge\{\psi \mid \operatorname{Mod}(S) \models \varphi \Rightarrow \psi\}
\end{aligned}
$$

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:

$$
\begin{aligned}
\operatorname{cons}_{S} \varphi & =\bigwedge\{\psi \mid \varphi \Rightarrow \psi \in S\} \\
\operatorname{ent}_{S} \varphi & =\bigwedge\{\psi \mid \operatorname{Mod}(S) \models \varphi \Rightarrow \psi\}
\end{aligned}
$$

Note:

$$
\begin{aligned}
\operatorname{Mod}(S) & =\operatorname{Mod}\left(\left\{\varphi \Rightarrow \operatorname{cons}_{S} \varphi \mid \varphi \in \mathcal{L}_{\text {Coeq }}\right\}\right) \\
& =\operatorname{Mod}\left(\left\{\varphi \Rightarrow \operatorname{ent}_{S} \varphi \mid \varphi \in \mathcal{L}_{\text {Coeq }}\right\}\right)
\end{aligned}
$$

Subgoal: Show cons ${ }_{\text {Ded }(S)}=$ ent $_{S}$.

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:
2. Show that ent_{S} is the greatest suboperator of $\square \circ \operatorname{cons}_{S}$ such that:

- ent $_{S}$ is a comonad (deflationary, idempotent, monotone);
- ent $_{S}$ is endomorphism invariant - for all $h: H C \rightarrow H C$, $\exists_{h} \circ$ ent $_{S} \leq$ ent $_{S} \circ \exists_{h}$.

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:
2. Show that ent ${ }_{S}$ is the greatest EIEIO (Endomorphism Invariant Interior Operator).

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:
2. Show that ent ${ }_{S}$ is the greatest EIEIO.
3. Show that if S is deductively closed, cons_{S} is EIEIO. Hence, $\operatorname{cons}_{S}=$ ent $_{S}$.

Sketch of completeness

1. Define two operators $\operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$:
2. Show that ent ${ }_{S}$ is the greatest EIEIO.
3. Show that if S is deductively closed, cons_{S} is EIEIO. Hence, $\operatorname{cons}_{S}=$ ent $_{S}$.
4. Imp $\operatorname{Mod}(S)=\left\{\varphi \Rightarrow \psi \mid \psi \geq \operatorname{ent}_{S} \varphi\right\}$. Use DSR and \bigwedge-E to show that $\operatorname{Ded}(S)=\operatorname{Imp} \operatorname{Mod}(S)$.

Outline

I. Preliminaries

II. Quasi-covarieties and covarieties
III. Coequations
IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

Outline

I. Proliminaries
II. Quasi-covarieties and covarieties

III. Coequations

IV. The Covariety Theorems
V. The Invariance Theorem
VI. Coequational logic (Soundness)
VII. Coequational logic (Completeness)
VIII. Implicational logic (Soundness)
IX. Implicational logic (Completeness)

