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Coequations

Let U 4 H and C' € C be injective with respect to
S-morphisms.
A coequation over C'Is an S-morphism P —~UHC InC.
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Coequations

Let U 4 H and C' € C be injective with respect to

S-morphisms.
A coeguation over C'Is an S-morphism P —~UHC InC.

We say (A, a) ¢ P just in case for every homomorphism
p: (A, a)—HC, we have Im(p) < P.

A5 UHC

e

P
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Coequations

Let U 4 H and C' € C be injective with respect to

S-morphisms.
A coeguation over C'Is an S-morphism P —~UHC InC.

We say (A, a) ¢ P just in case for every homomorphism
p: (A, a)—HC, we have Im(p) < P.

(4, O_<_>LPH C

P
Here, | P| is the largest subcoalgebra of HC' contained in
P.
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Coequations

Let U 4 H and C' € C be injective with respect to
S-morphisms.
A coeguation over C'Is an S-morphism P —~UHC InC.

We say (A, a) ¢ P just in case for every homomorphism

p: (A, a)—HC, we have Im(p) < P.
Thus, (A, a) =¢ Piff (A, a) € Proj(|P]), i.e.,

Hom((A, a), HC) = Hom((A, ), [P]).
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This coalgebra satisfies P.




Under any coloring, the elements of the coalgebra map to
elements of P.









Comparing coequations and equations

Algebras Coalgebras

Projective set of variables X Injective set of colors C
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Comparing coequations and equations

Algebras Coalgebras

Projective set of variables X Injective set of colors C
Set of equations Coequation
E—UFX P~—UHC
q:FX—»(Q, v) i:|P]»HC

The Formal Dual of Birkhoff’s Completeness Theorem — p.5/26



Comparing coequations and equations

Algebras Coalgebras

Projective set of variables X Injective set of colors C

Set of equations Coequation
F—UFX P—UHC
q:FX—+(Q, v) i:|P]»HC

— as g-Injective — as ¢-projective
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Conditional coequations

Let P, Q < UHC.
We write (A, a) =c P = @ just in case, for every

p: (A, a)—HC such that Im(p) < P, we have Im(p) < Q.
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Conditional coequations
Let P, @ < UHC.

We write (A, )

—c P = () Just In case, for every

p: (A, a)—HC such that Im(p) < P, we have Im(p) < Q.

A—UHC A——UHC

A A

P @
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Conditional coequations

Let P, Q < UHC.
We write (A, a) =c P = @ just in case, for every

p: (A, a)—HC such that Im(p) < P, we have Im(p) < Q.

((

A, a)

P = () just In case every homomorphism

(A, a)—|P]| factors through |Q], i.e.,

Hom({A, o), [P]) = Hom((4, a),[Q]).
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Recall our coequation P.
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And consider the “conditional coequation” P = ().
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This coalgebra satisfies P = Q).
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However we paint it so that it factors through P, it also
factors through Q).
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(It also satisfies () = P.)
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Dualizing negations

Let P < UHC. -
We write (A, a) =¢ P justin case for every p: A—C', it is
not the case Im(p) < P.
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Dualizing negations

Let P < UHC.

We write (A, o) =¢ P just in case for every p: A—C, it is
not the case Im(p) < P.

Equivalently, there is no homomorphism (A, a)—|P], i.e.,

Hom({A, a),[P]) = 0.
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Dualizing negations

Let P < UHC.

We write (A, o) =¢ P just in case for every p: A—C, it is
not the case Im(p) < P.

Equivalently, there is no homomorphism (A, a)—|P], i.e.,

Hom({A, a),[P]) = 0.

No matter how we paint A, there is some elementa € A
that doesn’t land in P.
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Dualizing negations

Let P < UHC. -
We write (A, a) =¢ P justin case for every p: A—C', it is
not the case Im(p) < P.

No matter how we paint A, there is some elementa € A
that doesn’t land in P.

Note: This does not mean that (A, «) = —P! “Something

In A does not land in P,” Is not the same as, “Everything In
A does not land In P.”
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Some co-Birkhoff-type theorems

Define

ThV = {P—UHC |V =¢ P}
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Some co-Birkhoff-type theorems
Define
ThV ={P»UHC |V =¢ P}
mpV ={P="Q|V cP=Q}




Some co-Birkhoff-type theorems

Define

ThV = {P+ SUHC |V

_. P}

ImpV ={P=Q |V |=cP=Q}

HornV = Imp VU {P" | V
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Some co-Birkhoff-type theorems

Define

ThV = {P» UHC |V

_. P}

ImpV ={P=Q |V |=cP=Q}

HornV = Imp VU {P" | V

—c P}

Further, let Mod S’ denote the models of S for S a class of
coequations, conditional coequations or Horn coequations.
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Some co-Birkhoff-type theorems

/Theorem (Birkhoff covariety theorem).
Mod ThV = SHYXV

Theorem (Quasi-covariety theorem).
ModImpV = HXV

Theorem (Horn covariety theorem).

ModHorn'V = HY "V
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Birkhoff’s deduction theorem

Fix a set X of variables and let £ be a set of equations over
X. FEis deductively closed just in case E satisfies the
following:

() =z € F,

() t1 =t e E=1t, =1t € |

(i) t1 =ty e Fandty =t3 € E =t =t3 € E|
(iv) ti =th e Eand f € =f(t1) = f(t2) € E;
(V) t1 =ty € E=t|t/x] =ts|t/x] € E.
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Birkhoff’s deduction theorem

Fix a set X of variables and let £ be a set of equations over
X. FEis deductively closed just in case E satisfies the
following:

() =z € F,

(N t1 =t € E=ty =1t € F,

(i) ty=tre Fandty =ts3 € E =1t =t3 €
(iv) ti =ty € Eand f € X=f(t1) = f(t2) € E;
(V) t1 =ty € E=t|t/x] =ts|t/x] € E.

Items (1) — (iv) ensure that £ Is a congruence and hence
uniquely determines a quotient of F'.X.
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Birkhoff’s deduction theorem

Fix a set X of variables and let £ be a set of equations over
X. FEis deductively closed just in case E satisfies the
following:

() =z € F,

() t1 =t e E=1t, =1t € |

(i) t1 =ty e Fandty =t3 € E =t =t3 € E|
(iv) ti =th e Eand f € =f(t1) = f(t2) € E;
(V) t1 =t € E=t|t/x] =ts|t/x] € E.

Item (V) ensures that £ Is a stable P-algebra, I.e., closed
under substitutions.
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Birkhoff’s deduction theorem

E' 1s deductively closed just in case E satisfies the
following:

(i) x=x € F;

() t1=t e E=1ty, =1t € F,

(i) t1 =ty € Fandty =t3 € E =1t =t3 € |
(iv) £t =th € Eand f € X=f(t1) = f(t2) € E;
(V) t1 =ty € E = ti|t/x] =ts|t/x] € E.

Let Ded:Rel(UFX)— Rel(UFX) be the closure operation

taking a set £ of equations over X to its deductive closure.
We can decompose Ded into two closure operators.
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Birkhoff’s deduction theorem

E 1s deductively closed just In case E satisfies the
following:

() z =2 € F,

(N t1 =t € E=1ty =1t € F,
() ty=t,e Fandty =ts € E =1t =t3 €
(iv) tt =t € Eand f € S=f(t) = f(t2) € E;
(V) t1 =ty € E=t1|t/x| =to|t/x] € E.

The first takes £ to the congruence It generates.
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Birkhoff’s deduction theorem

E' 1s deductively closed just in case E satisfies the
following:

(i) x=x € F;

() t1=t e E=1ty, =1t € F,

(i) ty=t, e Fandty, =tg € E =t =t3 € F;
(iv) £t =th € Eand f € X=f(t1) = f(t2) € E;
(V) t1 =ty € E = ti|t/x] =ts|t/x] € E.

The second closes 1t under substitution of terms for
variables.
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Dualizing the completeness theorem

' Theorem (Birkhoff completeness theorem). For
any E € Rel(UFX), ThMod(E) = Ded(F)
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Dualizing the completeness theorem

' Theorem (Birkhoff completeness theorem). For
any E € Rel(UFX), ThMod(E) = Ded(F)

Compare this to the variety theorem.

-
Theorem (Birkhoff variety theorem).

Mod ThV = HSPV
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Dualizing the completeness theorem

' Theorem (Birkhoff completeness theorem). For
any E € Rel(UFX), ThMod(E) = Ded(F)

Th Mod(FE) satisfies the following fixed point description.
Mod(F) = Th Mod(FE);
If Mod(FE) = E’, then E' C ThMod(FE).
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Dualizing the completeness theorem

Th Mod(FE) satisfies the following fixed point description.
Mod(F) = Th Mod(E);
If Mod(FE) = E’, then E' C ThMod(FE).

We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P)”, written Gen Mod(P).
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Dualizing the completeness theorem

We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P)”, written Gen Mod(P).

Gen Mod( P) satisfies the following fixed point description.
Mod(P) = Gen Mod(FE);
If Mod(P) = P', then Gen Mod(P) C P'.
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Dualizing the completeness theorem

We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P)”, written Gen Mod(P).

Gen Mod( P) satisfies the following fixed point description.
Mod(P) = Gen Mod(FE);
If Mod(P) = P', then Gen Mod(P) C P'.

' Recall that sets of equations correspond to coequations,
so this Is an appropriate dualization.
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Dualizing the completeness theorem

We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P)”, written Gen Mod(P).

Gen Mod( P) satisfies the following fixed point description.
Mod(P) = Gen Mod(FE);
If Mod(P) = P', then Gen Mod(P) C P'.

' Recall that sets of equations correspond to coequations,
so this Is an appropriate dualization.

A generating coequation gives a measure of the
“coequational commitment” of V.
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Dualizing deductive closure

' Theorem (Birkhoff completeness theorem). For
any E € Rel(UFX), ThMod(E) = Ded(F)

To dualize Ded, we consider again its components.

Algebras Coalgebras

Projective set of variables X  Injective set of colors C
Set of eguations Coeguation
EF—=UFX P—UHC

q:FX—(Q, v) i:|P] —HC
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Dualizing deductive closure

' Theorem (Birkhoff completeness theorem). For
any E € Rel(UFX), ThMod(E) = Ded(F)

To dualize Ded, we consider again its components.

Algebras Coalgebras

Projective set of variables X  Injective set of colors C
Set of eguations Coeguation
EF—=UFX P—UHC

Congruence generated by £ Greatest subcoalgebrain P
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Dualizing deductive closure

' Theorem (Birkhoff completeness theorem). For
any E € Rel(UFX), ThMod(E) = Ded(F)

To dualize Ded, we consider again its components.

Algebras Coalgebras

Projective set of variables X  Injective set of colors C
Set of eguations Coeguation
EF—=UFX P—UHC

Congruence generated by £ Greatest subcoalgebrain P

Greatest endo-invariant sub-

Closure under substitution .
obj ect
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The modal operator

Let P, () —A be given. We write P = @ if there I1s a map
P—(@) such that the diagram below commutes.

P—(Q)

A/
A
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The modal operator

Let P, () —A be given. We write P = @ if there I1s a map
P—(@) such that the diagram below commutes.

P—Q)

A/
A

In fact, P —() Is necessarily an S-morphism.

The Formal Dual of Birkhoff’s Completeness Theorem — p.17/26



The modal operator

Let O:Sub(UHC)— Sub(UHC') be the composite U|—].
In other terms, O Is a comonad taking a coequation P to
the largest subcoalgebra (A, o) of HC such that A < P.
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The modal operator

Let O:Sub(UHC)— Sub(UHC') be the composite U|—].
In other terms, O Is a comonad taking a coequation P to
the largest subcoalgebra (A, o) of HC such that A < P.

As Is well-known, if I" preserves pullbacks of
S-morphisms, then O Is an S4 operator.

() fPFQthenOP FOQ;
(i) OP+ P;

(i) OP P;

(iv) O(P — Q)+ OP — 0Q;
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The modal operator

Let O:Sub(UHC)— Sub(UHC') be the composite U|—].
In other terms, O Is a comonad taking a coequation P to
the largest subcoalgebra (A, o) of HC such that A < P.

() fPFEQthenOP F OQ;
(i) OP+F P,
(in) OP F P;

(iv) O(FP — Q) FOP — 0O,

(1) follows from functoriality.
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The modal operator

Let

In other terms,

:Sub(UHC')— Sub(UHC') be the composite U|—|.

IS @ comonad taking a coequation P to

the largest subcoalgebra (A, o) of HC such that A < P.

(1) If P @ then

(11)
(iii)
(Iv)

PrE P;
PF P:
(P — Q) F

P

P —

@

Q)

(i) and (i) are the counit and comultiplication of the
comonad.
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The modal operator

Let

In other terms,

:Sub(UHC')— Sub(UHC') be the composite U|—|.

IS @ comonad taking a coequation P to

the largest subcoalgebra (A, o) of HC such that A < P.

(1) If P @ then

(i)
(iii)
(Iv)

PrE P;
P P:
(P — Q) F

P

P —

@

@

(iv) follows from the fact that U:&—& preserves finite

meets.
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The modal operator

() fPFQthenOP FOQ;
(i) OP + P,
(i) OP P;

(iv) O(FP — Q) FOP — 0OQ;

Proof.
P—QFP—C(Q

(P—=Q)ANPFQ
By the counit of adjunction — AN P 4 P — —. =>>
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The modal operator

() fPFQthenOP FOQ;
(i) OP + P,

(i) OP P;

(iv) O(FP — Q) FOP — 0OQ;

Proof.
(P—=Q)ANPFQ

(P—=Q)AP)FDOC
By (i). >




The modal operator

() fPEQthenOP FOQ;
PrE P;

(11)
(iii)
(Iv)

Proof.

Because

P~

P,

(P—>Q)|— P — 0O0Q;

(P—Q)AP)F DY
(P— Q) NOPFOQ

preserves meets. =




The modal operator

() fPEQthenOP FOQ;

(11)
(iii)
(Iv)

Proof.

PrE P;

P~

P,

(P — Q)+ OP — 0Q;

(P—- Q) NOPFOQ

(P%Q)F P — 0OQ

Again, by the adjunction — AP 4P — —.




Invariant coequations

Let f:(A, a)—(B, ) and P —A be given. We let 3, P
denote the image of the composite P —A——B.

P—»pr

L]

A—DB
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Invariant coequations

Let P C UHC. We say that P Is endomorphism-invariant
just in case, for every “repainting”

p:UHC—C,
equivalently, every homomorphism p: HC'—HC', we have

3P < P
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Invariant coequations

Let P C UHC. We say that P Is endomorphism-invariant
just in case, for every “repainting”

p:UHC—C,

equivalently, every homomorphism p: HC'—HC', we have

Jocrnc(B(e) = z A P(e)) F P(z).
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Invariant coequations

Let P C UHC. We say that P Is endomorphism-invariant
just in case, for every “repainting”

p:UHC—C,

equivalently, every homomorphism p: HC'—HC', we have

Jocrnc(B(e) = z A P(e)) F P(z).

In other words, however we repaint 4 C, the elements of P
are again (under this new coloring) elements of P.
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Definition of
Let P C UHC. Define
Ir = {Q < UHC |VYp:HC—HC(3,Q < P)}.

That is, Zp 1s the collection of all those coequations ()
such that, however we “repaint” U HC', the image of () still
lands In P.
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Definition of
Let P C UHC. Define
Ir = {Q < UHC |VYp:HC—HC(3,Q < P)}.

That is, Zp 1s the collection of all those coequations ()
such that, however we “repaint” U HC', the image of () still
lands In P.

In particular, If ) € Zp, then Q) - P.
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Definition of
Let P C UHC. Define
Ip ={Q <UHC |Vp:HC——HC(3,Q < P)}.

We define a functor @ :Sub(UHC')— Sub(UHC') by

P:V@.

Then 1 P Is the greatest invariant subobject of U HC' con-
tained in P.
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Definition of [
We define a functor @ :Sub(U HC')— Sub(UHC') by

P:V@.

That Is, @ P satisfies the following:
Forallp: HC—HC,3,a P+~ 1aP.
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Definition of

We define a functor @ :Sub(U HC')— Sub(U HC') by

Forall p: HC—HC, 3,

P:V@.

That Is, @ P satisfies the following:

P -

P.

If Q= Pandforall p: HC—HC, 3,0 - Q, then

OF P.
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o

@ »

The coequation P.







<

@ »

The coequation 71 P.



1S S4

One can show that

(1)

(1) If P E ( then
PrE P;
P P:

(iii)
(Iv)

(P— Q) F

IS an S4 operator.
P+ nQ,

P — 0,
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1S S4

One can show that [@ Is an S4 operator.
() fPFQthenaP F 1@,

(i) P+ P,

(i) P P;

(iv) b(P — Q) F P — B,

(1) - (in) follow from the fact that @ I1s a comonad, as before.
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1S S4

One can show that 7 Is an S4 operator.
() fPFQthenpP - R1Q;

(i) Pk P;

(i) P+ P;

(iv) B(P — Q) FBP — 1Q;

N

IV) requires an argument that the meet of two invariant co-
equations Is again invariant. This Is not difficult.
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Outline

VII.
VIII.
| X.

ne ] operator

Ne [1 operator

ne Invariance theorem

Commutativity of

The
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VI.
VII.
VIII.

I X.

Birkhoff’s completeness theorem

Dualizing deductive closure

T he O operator

ne 1 operator

ne Invariance theorem

Commutativity of O,
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The Invariance theorem

Lemma. (A, a) = P iff (A, a)
Lemma. (A, o) = P iff (A, a)

o
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The Invariance theorem
Lemma. (A, o) = P iff (A, a)

Lemma. |

P]

= P.
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The Invariance theorem

Lemma. (A, o) = P iff (A, a) = P.

Lemma. 1P| = P.

Lemma. P < P, q.e., if P s invariant,then
so s OF .
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The Invariance theorem

Lemma. (A, o) = P iff (A, a) = P.
Lemma. [BP| = P.

Lemma. P < P.

Theorem. Gen Mod P = P.
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The Invariance theorem
Lemma. (A, o) = P iff (A, a) = P.

Lemma. [BP| = P.

Lemma. P <

P.

Theorem. Gen Mod

Proof. From the above, we see that Mod P =

P = P.
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The Invariance theorem

Lemma. (A, a) = P iff (A, a) P.

Lemma. [BP| = P.

Lemma. P < P.

Theorem. Gen Mod P = P.

Proof. From the above, we see that Mod P = P.

Suppose that Mod P = ). Then |[BP| E Q. >>
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The Invariance theorem

Lemma. (A, a) = P iff (A, a) P.

Lemma. [BP| = P.

Lemma. P < P.

Theorem. Gen Mod P = P.

Proof. From the above, we see that Mod P = P.

Suppose that Mod P = ). Then |[BP] = (). Hence:

Ul P] ——UHC

I

=
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The Invariance theorem

Lemma. (A, a) = P iff (A, a) P.
Lemma. [BP| = P.
Lemma. P < P.
Theorem. Gen Mod P = P.
Proof. From the above, we see that Mod P = P.
Suppose that Mod P = ). Then |[BP| = (). Hence:
P — U[fC
0

That is, Pt Q.
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Commutativity of O, I

As we saw (without proof),
Lemma. P < P.

That Is, the greatest subcoalgebra of an endomorphism in-
variant predicate is itself invariant.
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Commutativity of O,

As we saw (without proof),
Lemma. P < P.

Question: When is that an equality?
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Commutativity of O,

As we saw (without proof),

Lemma. P < P.
Theorem. If I' preserves non-empty intersections,
then P = P.
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Commutativity of O, I

As we saw (without proof),

Lemma. P < P.
Theorem. [fI' preserves non-empty intersections,
then P = P.

In this case, subcoalgebras are closed under arbitrary inter-
sections.
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A counterexample

Consider the functor F:Set—Set taking a set X to the
filters on X.

F does not preserve non-empty intersections.
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A counterexample

Consider the functor F:Set—Set taking a set X to the
filters on X.

A topological space X may be considered as a
JF-coalgebra, via the structure map X —F.X taking an
element x € X to the neighborhood filter containing .
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A counterexample

Consider the functor F:Set—Set taking a set X to the
filters on X.

A topological space X may be considered as a
JF-coalgebra, via the structure map X —F.X taking an
element x € X to the neighborhood filter containing .

We will show an example of a space X together with a
“coequation” P C X such that P # P, le.,
P < P.
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A counterexample

We will show an example of a s
“coequation” P C X such that
P < P.

pace X toget

ner with a

P #

P, le.,

1

Consider the real interval (0, 1], topologized with open sets

of the form (z, 1| for x € X.
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A counterexample

We will show an example of a space X together with a
“coequation” P C X such that P # P, l.e.,
P < P.

1

Consider the real interval (0, 1], topologized with open sets
of the form (x, 1] for x € X. It is not difficult to show that
the only non-trivial endo-invariant subset of (0, 1] is {1}.
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A counterexample

We will show an example of a space X together with a
“coequation” P C X such that P # P, l.e.,
P < P.

—

Consider the real interval (0, 1], topologized with open sets
of the form (x, 1] for x € X. It is not difficult to show that

the only non-trivial endo-invariant subset of (0, 1] is {1}.
Let P = (3, 1].
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A counterexample

We will show an example of a s

“coequation” P C X such that P #

P < P.

pace X together with a

P, le.,

————

Let P = (5,1]. Then

P = Pandso

P={1}.
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A counterexample

We will show an example of a space X together with a
“coequation” P C X such that P # P, l.e.,
P < P.

—

Let P = (3,1]. ThenOP = P and so P = {1}. On

the other hand, P = {1}, and so P = 0.
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VI.
VII.
VIII.

I X.

Birkhoff’s completeness theorem

Dualizing deductive closure

T he O operator

ne 1 operator

ne Invariance theorem

Commutativity of O,
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VI.
VII.
VIII.

| X.

Birkhoff’s completeness theorem

Dualizing deductive closure

T he O operator

ne 1 operator

ne Invariance theorem

Commutativity of I,
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