The Formal Dual of Birkhoff's Completeness Theorem

Jesse Hughes
jesseh@cs.kun.nl
University of Nijmegen

Outline

I. Coequations

Outline

I. Coequations

II. Conditional coequations

Outline

I. Coequations

II. Conditional coequations
III. Horn coequations

Outline

I. Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)

Outline

I. Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem

Outline

I. Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure

Outline

I. Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator

Outline

I. Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator

Outline

I. Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem

Outline

I. Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Coequations

Let $U \dashv H$ and $C \in \mathcal{C}$ be injective with respect to \mathcal{S}-morphisms.
A coequation over C is an \mathcal{S}-morphism $P \nrightarrow U H C$ in \mathcal{C}.

Coequations

Let $U \dashv H$ and $C \in \mathcal{C}$ be injective with respect to \mathcal{S}-morphisms.
A coequation over C is an \mathcal{S}-morphism $P \mapsto U H C$ in \mathcal{C}. We say $\langle A, \alpha\rangle \models_{C} P$ just in case for every homomorphism $p:\langle A, \alpha\rangle \rightarrow H C$, we have $\operatorname{Im}(p) \leq P$.

Coequations

Let $U \dashv H$ and $C \in \mathcal{C}$ be injective with respect to \mathcal{S}-morphisms.
A coequation over C is an \mathcal{S}-morphism $P \mapsto U H C$ in \mathcal{C}. We say $\langle A, \alpha\rangle \models_{C} P$ just in case for every homomorphism $p:\langle A, \alpha\rangle \rightarrow H C$, we have $\operatorname{Im}(p) \leq P$.

$$
\underset{\exists}{\langle A, \alpha\rangle \xrightarrow{\forall p}} \underset{[}{H} H_{[} C
$$

Here, $[P]$ is the largest subcoalgebra of $H C$ contained in P.

Coequations

Let $U \dashv H$ and $C \in \mathcal{C}$ be injective with respect to \mathcal{S}-morphisms.
A coequation over C is an \mathcal{S}-morphism $P \mapsto U H C$ in \mathcal{C}. We say $\langle A, \alpha\rangle \models_{C} P$ just in case for every homomorphism $p:\langle A, \alpha\rangle \rightarrow H C$, we have $\operatorname{Im}(p) \leq P$.
Thus, $\langle A, \alpha\rangle \models_{C} P$ iff $\langle A, \alpha\rangle \in \operatorname{Proj}([P])$, i.e.,
$\operatorname{Hom}(\langle A, \alpha\rangle, H C) \cong \operatorname{Hom}(\langle A, \alpha\rangle,[P])$.

Example

The cofree coalgebra $H 2$

Example

Example

This coalgebra satisfies P.

Example

Under any coloring, the elements of the coalgebra map to elements of P.

Example

This coalgebra doesn't satisfy P.

Example

If we paint the circle red, it isn't mapped to an element of P.

Comparing coequations and equations

Algebras

Projective set of variables X Injective set of colors C

Comparing coequations and equations

Algebras
Projective set of variables X Injective set of colors C
Set of equations

Coalgebras

Coequation

Comparing coequations and equations

Algebras

Projective set of variables $X \quad$ Injective set of colors C

Set of equations
$E \Longrightarrow U F X$

Coalgebras

Coequation
$P \longmapsto U H C$

Comparing coequations and equations

Algebras

Projective set of variables $X \quad$ Injective set of colors C

Set of equations
$E \Longrightarrow U F X$
$q: F X \rightarrow\langle Q, \nu\rangle$

Coalgebras

Coequation
$P \longmapsto U H C$
$i:[P] \mapsto H C$

Comparing coequations and equations

Algebras

Projective set of variables X Injective set of colors C

Set of equations
$E \Longrightarrow U F X$
$q: F X \rightarrow\langle Q, \nu\rangle$
\models as q-injective

Coalgebras

Coequation
$P \longmapsto U H C$
$i:[P] \mapsto H C$
\vDash as i-projective

Conditional coequations

Let $P, Q \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} P \Rightarrow Q$ just in case, for every
$p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{Im}(p) \leq P$, we have $\operatorname{Im}(p) \leq Q$.

Conditional coequations

Let $P, Q \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} P \Rightarrow Q$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{Im}(p) \leq P$, we have $\operatorname{Im}(p) \leq Q$.

Conditional coequations

Let $P, Q \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} P \Rightarrow Q$ just in case, for every $p:\langle A, \alpha\rangle \rightarrow H C$ such that $\operatorname{Im}(p) \leq P$, we have $\operatorname{Im}(p) \leq Q$.
$\langle A, \alpha\rangle \models P \Rightarrow Q$ just in case every homomorphism $\langle A, \alpha\rangle \rightarrow[P]$ factors through $[Q]$, i.e.,
$\operatorname{Hom}(\langle A, \alpha\rangle,[P]) \cong \operatorname{Hom}(\langle A, \alpha\rangle,[Q])$.

Example

Recall our coequation P.

Example

Let Q be the coequation above.

Example

And consider the "conditional coequation" $P \Rightarrow Q$.

Example

This coalgebra satisfies $P \Rightarrow Q$.

Example

However we paint it so that it factors through P, it also factors through Q.

Example

(It also satisfies $Q \Rightarrow P$.)

Dualizing negations

Let $P \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} \bar{P}$ just in case for every $p: A \rightarrow C$, it is not the case $\operatorname{Im}(\widetilde{p}) \leq P$.

Dualizing negations

Let $P \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} \bar{P}$ just in case for every $p: A \rightarrow C$, it is not the case $\operatorname{Im}(\widetilde{p}) \leq P$.
Equivalently, there is no homomorphism $\langle A, \alpha\rangle \rightarrow[P]$, i.e., $\operatorname{Hom}(\langle A, \alpha\rangle,[P])=\emptyset$.

Dualizing negations

Let $P \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} \bar{P}$ just in case for every $p: A \rightarrow C$, it is not the case $\operatorname{Im}(\widetilde{p}) \leq P$.
Equivalently, there is no homomorphism $\langle A, \alpha\rangle \rightarrow[P]$, i.e., $\operatorname{Hom}(\langle A, \alpha\rangle,[P])=\emptyset$.

No matter how we paint A, there is some element $a \in A$ that doesn't land in P.

Dualizing negations

Let $P \leq U H C$.
We write $\langle A, \alpha\rangle \models_{C} \bar{P}$ just in case for every $p: A \rightarrow C$, it is not the case $\operatorname{Im}(\widetilde{p}) \leq P$.

No matter how we paint A, there is some element $a \in A$ that doesn't land in P.

Note: This does not mean that $\langle A, \alpha\rangle \models \neg P$! "Something in A does not land in P," is not the same as, "Everything in A does not land in P."

Example

The coalgebra on the left satisfies \bar{P}.

Example

No matter how we paint it, the square does not land in P

Outline

I. Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Outline

Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Some co-Birkhoff-type theorems

Define

$$
\operatorname{Th} \mathbf{V}=\left\{P \longmapsto U H C \mid \mathbf{V} \models_{C} P\right\}
$$

Some co-Birkhoff-type theorems

Define

$$
\begin{aligned}
\operatorname{Th} \mathbf{V} & =\left\{P \longmapsto U H C \mid \mathbf{V} \models_{C} P\right\} \\
\operatorname{Imp} \mathbf{V} & =\left\{P \Rightarrow^{C} Q \mid \mathbf{V} \models_{C} P \Rightarrow Q\right\}
\end{aligned}
$$

Some co-Birkhoff-type theorems

Define

$$
\begin{aligned}
\text { Th } \mathbf{V} & =\left\{P \longmapsto U H C \mid \mathbf{V} \models_{C} P\right\} \\
\operatorname{Imp} \mathbf{V} & =\left\{P \Rightarrow^{C} Q \mid \mathbf{V} \models_{C} P \Rightarrow Q\right\} \\
\text { Horn } \mathbf{V} & =\operatorname{Imp} \mathbf{V} \cup\left\{\bar{P}^{C} \mid \mathbf{V} \models_{C} \bar{P}\right\}
\end{aligned}
$$

Some co-Birkhoff-type theorems

Define

$$
\begin{aligned}
\text { Th } \mathbf{V} & =\left\{P \longmapsto U H C \mid \mathbf{V} \models_{C} P\right\} \\
\operatorname{Imp} \mathbf{V} & =\left\{P \Rightarrow^{C} Q \mid \mathbf{V} \models_{C} P \Rightarrow Q\right\} \\
\text { Horn } \mathbf{V} & =\operatorname{Imp} \mathbf{V} \cup\left\{\bar{P}^{C} \mid \mathbf{V} \models_{C} \bar{P}\right\}
\end{aligned}
$$

Further, let Mod S denote the models of S for S a class of coequations, conditional coequations or Horn coequations.

Some co-Birkhoff-type theorems

Theorem (Birkhoff covariety theorem).

$$
\operatorname{Mod} \operatorname{Th} \mathbf{V}=\mathcal{S H} \Sigma \mathbf{V}
$$

Theorem (Quasi-covariety theorem).

$$
\text { Mod } \operatorname{lmp} \mathbf{V}=\mathcal{H} \Sigma \mathbf{V}
$$

Theorem (Horn covariety theorem).
Mod Horn $\mathbf{V}=\mathcal{H} \Sigma^{+} \mathbf{V}$

Birkhoff's deduction theorem

Fix a set X of variables and let E be a set of equations over X. E is deductively closed just in case E satisfies the following:
(i) $x=x \in E$;
(ii) $t_{1}=t_{2} \in E \Rightarrow t_{2}=t_{1} \in E$;
(iii) $t_{1}=t_{2} \in E$ and $t_{2}=t_{3} \in E \Rightarrow t_{1}=t_{3} \in E$;
(iv) $t_{1}^{i}=t_{2}^{i} \in E$ and $f \in \Sigma \Rightarrow f\left(\vec{t}_{1}\right)=f\left(\vec{t}_{2}\right) \in E$;
(v) $t_{1}=t_{2} \in E \Rightarrow t_{1}[t / x]=t_{2}[t / x] \in E$.

Birkhoff's deduction theorem

Fix a set X of variables and let E be a set of equations over X. E is deductively closed just in case E satisfies the following:
(i) $x=x \in E$;
(ii) $t_{1}=t_{2} \in E \Rightarrow t_{2}=t_{1} \in E$;
(iii) $t_{1}=t_{2} \in E$ and $t_{2}=t_{3} \in E \Rightarrow t_{1}=t_{3} \in E$;
(iv) $t_{1}^{i}=t_{2}^{i} \in E$ and $f \in \Sigma \Rightarrow f\left(\vec{t}_{1}\right)=f\left(\vec{t}_{2}\right) \in E$;
(v) $t_{1}=t_{2} \in E \Rightarrow t_{1}[t / x]=t_{2}[t / x] \in E$.

Items (i) - (iv) ensure that E is a congruence and hence uniquely determines a quotient of $F X$.

Birkhoff's deduction theorem

Fix a set X of variables and let E be a set of equations over X. E is deductively closed just in case E satisfies the following:
(i) $x=x \in E$;
(ii) $t_{1}=t_{2} \in E \Rightarrow t_{2}=t_{1} \in E$;
(iii) $t_{1}=t_{2} \in E$ and $t_{2}=t_{3} \in E \Rightarrow t_{1}=t_{3} \in E$; (iv) $t_{1}^{i}=t_{2}^{i} \in E$ and $f \in \Sigma \Rightarrow f\left(\vec{t}_{1}\right)=f\left(\vec{t}_{2}\right) \in E$;
(v) $t_{1}=t_{2} \in E \Rightarrow t_{1}[t / x]=t_{2}[t / x] \in E$.

Item (v) ensures that E is a stable \mathbb{P}-algebra, i.e., closed under substitutions.

Birkhoff's deduction theorem

E is deductively closed just in case E satisfies the following:
(i) $x=x \in E$;
(ii) $t_{1}=t_{2} \in E \Rightarrow t_{2}=t_{1} \in E$;
(iii) $t_{1}=t_{2} \in E$ and $t_{2}=t_{3} \in E \Rightarrow t_{1}=t_{3} \in E$;
(iv) $t_{1}^{i}=t_{2}^{i} \in E$ and $f \in \Sigma \Rightarrow f\left(\vec{t}_{1}\right)=f\left(\vec{t}_{2}\right) \in E$;
(v) $t_{1}=t_{2} \in E \Rightarrow t_{1}[t / x]=t_{2}[t / x] \in E$.

Let $\operatorname{Ded}: \operatorname{Rel}(U F X) \rightarrow \operatorname{Rel}(U F X)$ be the closure operation taking a set E of equations over X to its deductive closure. We can decompose Ded into two closure operators.

Birkhoff's deduction theorem

E is deductively closed just in case E satisfies the following:
(i) $x=x \in E$;
(ii) $t_{1}=t_{2} \in E \Rightarrow t_{2}=t_{1} \in E$;
(iii) $t_{1}=t_{2} \in E$ and $t_{2}=t_{3} \in E \Rightarrow t_{1}=t_{3} \in E$;
(iv) $t_{1}^{i}=t_{2}^{i} \in E$ and $f \in \Sigma \Rightarrow f\left(\overrightarrow{t_{1}}\right)=f\left(\overrightarrow{t_{2}}\right) \in E$;
(v) $t_{1}=t_{2} \in E \Rightarrow t_{1}[t / x]=t_{2}[t / x] \in E$.

The first takes E to the congruence it generates.

Birkhoff's deduction theorem

E is deductively closed just in case E satisfies the following:
(i) $x=x \in E$;
(ii) $t_{1}=t_{2} \in E \Rightarrow t_{2}=t_{1} \in E$;
(iii) $t_{1}=t_{2} \in E$ and $t_{2}=t_{3} \in E \Rightarrow t_{1}=t_{3} \in E$;
(iv) $t_{1}^{i}=t_{2}^{i} \in E$ and $f \in \Sigma \Rightarrow f\left(\vec{t}_{1}\right)=f\left(\vec{t}_{2}\right) \in E$;
(v) $t_{1}=t_{2} \in E \Rightarrow t_{1}[t / x]=t_{2}[t / x] \in E$.

The second closes it under substitution of terms for variables.

Outline

Coequations

II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of $\square, ~ \nabla$

Outline

Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem). For any $E \in \operatorname{Rel}(U F X)$, $\operatorname{Th} \operatorname{Mod}(E)=\operatorname{Ded}(E)$

Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem). For any $E \in \operatorname{Rel}(U F X)$, $\operatorname{Th} \operatorname{Mod}(E)=\operatorname{Ded}(E)$

Compare this to the variety theorem.
Theorem (Birkhoff variety theorem).

$$
\operatorname{Mod} \operatorname{Th} \mathbf{V}=\mathcal{H S P} \mathbf{V}
$$

Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem). For any $E \in \operatorname{Rel}(U F X)$, $\operatorname{Th} \operatorname{Mod}(E)=\operatorname{Ded}(E)$

Th $\operatorname{Mod}(E)$ satisfies the following fixed point description.

- $\operatorname{Mod}(E) \models \operatorname{Th} \operatorname{Mod}(E)$;
- If $\operatorname{Mod}(E) \models E^{\prime}$, then $E^{\prime} \subseteq \operatorname{Th} \operatorname{Mod}(E)$.

Dualizing the completeness theorem

Th $\operatorname{Mod}(E)$ satisfies the following fixed point description.

- $\operatorname{Mod}(E) \models \operatorname{Th} \operatorname{Mod}(E)$;
- If $\operatorname{Mod}(E) \models E^{\prime}$, then $E^{\prime} \subseteq \operatorname{Th} \operatorname{Mod}(E)$.

We dualize this fixed point description to yield its coalgebraic analogue. We call the analogue the "generating coequation for $\operatorname{Mod}(P)$ ", written $\operatorname{Gen} \operatorname{Mod}(P)$.

Dualizing the completeness theorem

We dualize this fixed point description to yield its coalgebraic analogue. We call the analogue the "generating coequation for $\operatorname{Mod}(P)$ ", written $\operatorname{Gen} \operatorname{Mod}(P)$.
Gen $\operatorname{Mod}(P)$ satisfies the following fixed point description.

- $\operatorname{Mod}(P) \models \operatorname{Gen} \operatorname{Mod}(E)$;
- If $\operatorname{Mod}(P) \models P^{\prime}$, then $\operatorname{Gen} \operatorname{Mod}(P) \subseteq P^{\prime}$.

Dualizing the completeness theorem

We dualize this fixed point description to yield its coalgebraic analogue. We call the analogue the "generating coequation for $\operatorname{Mod}(P)$ ", written $\operatorname{Gen} \operatorname{Mod}(P)$.

Gen $\operatorname{Mod}(P)$ satisfies the following fixed point description.

- $\operatorname{Mod}(P) \models \operatorname{Gen} \operatorname{Mod}(E)$;
- If $\operatorname{Mod}(P) \models P^{\prime}$, then $\operatorname{Gen} \operatorname{Mod}(P) \subseteq P^{\prime}$.

Recall that sets of equations correspond to coequations, so this is an appropriate dualization.

Dualizing the completeness theorem

We dualize this fixed point description to yield its coalgebraic analogue. We call the analogue the "generating coequation for $\operatorname{Mod}(P)$ ", written $\operatorname{Gen} \operatorname{Mod}(P)$.

Gen $\operatorname{Mod}(P)$ satisfies the following fixed point description.

- $\operatorname{Mod}(P) \models \operatorname{Gen} \operatorname{Mod}(E)$;
- If $\operatorname{Mod}(P) \models P^{\prime}$, then $\operatorname{Gen} \operatorname{Mod}(P) \subseteq P^{\prime}$.

Recall that sets of equations correspond to coequations, so this is an appropriate dualization.

A generating coequation gives a measure of the "coequational commitment" of V.

Dualizing deductive closure

Theorem (Birkhoff completeness theorem). For any $E \in \operatorname{Rel}(U F X)$, $\operatorname{Th} \operatorname{Mod}(E)=\operatorname{Ded}(E)$

To dualize Ded, we consider again its components.

Algebras

Projective set of variables X
Set of equations

$$
E \Longrightarrow U F X
$$

$$
q: F X \rightarrow\langle Q, \nu\rangle
$$

Coalgebras
Injective set of colors C
Coequation
$P \longmapsto U H C$
$i:[P] \multimap H C$

Dualizing deductive closure

Theorem (Birkhoff completeness theorem). For any $E \in \operatorname{Rel}(U F X)$, $\operatorname{Th} \operatorname{Mod}(E)=\operatorname{Ded}(E)$

To dualize Ded, we consider again its components.

Algebras

Projective set of variables X
Set of equations
$E \Longrightarrow U F X$
Congruence generated by E

Coalgebras
Injective set of colors C
Coequation
$P \longmapsto U H C$
Greatest subcoalgebra in P

Dualizing deductive closure

Theorem (Birkhoff completeness theorem). For any $E \in \operatorname{Rel}(U F X)$, $\operatorname{Th} \operatorname{Mod}(E)=\operatorname{Ded}(E)$

To dualize Ded, we consider again its components.

Algebras

Projective set of variables X
Set of equations
$E \Longrightarrow U F X$
Congruence generated by E
Closure under substitution

Coalgebras

Injective set of colors C
Coequation
$P \longmapsto U H C$
Greatest subcoalgebra in P
Greatest endo-invariant subobject

Outline

Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Outline

Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

The modal operator \square

Let $P, Q \mapsto A$ be given. We write $P \vdash Q$ if there is a map $P \rightarrow Q$ such that the diagram below commutes.

The modal operator \square

Let $P, Q \mapsto A$ be given. We write $P \vdash Q$ if there is a map $P \rightarrow Q$ such that the diagram below commutes.

In fact, $P \nrightarrow Q$ is necessarily an \mathcal{S}-morphism.

The modal operator \square

Let $\square: \operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$ be the composite $U[-]$. In other terms, \square is a comonad taking a coequation P to the largest subcoalgebra $\langle A, \alpha\rangle$ of $H C$ such that $A \leq P$.

The modal operator \square

Let $\square: \operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$ be the composite $U[-]$. In other terms, \square is a comonad taking a coequation P to the largest subcoalgebra $\langle A, \alpha\rangle$ of $H C$ such that $A \leq P$.

As is well-known, if Γ preserves pullbacks of \mathcal{S}-morphisms, then \square is an S 4 operator.
(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;

The modal operator \square

Let $\square: \operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$ be the composite $U[-]$. In other terms, \square is a comonad taking a coequation P to the largest subcoalgebra $\langle A, \alpha\rangle$ of $H C$ such that $A \leq P$.
(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;
(i) follows from functoriality.

The modal operator \square

Let $\square: \operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$ be the composite $U[-]$. In other terms, \square is a comonad taking a coequation P to the largest subcoalgebra $\langle A, \alpha\rangle$ of $H C$ such that $A \leq P$.
(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;
(ii) and (iii) are the counit and comultiplication of the comonad.

The modal operator \square

Let $\square: \operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$ be the composite $U[-]$. In other terms, \square is a comonad taking a coequation P to the largest subcoalgebra $\langle A, \alpha\rangle$ of $H C$ such that $A \leq P$.
(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;
(iv) follows from the fact that $U: \mathcal{E}_{\Gamma} \rightarrow \mathcal{E}$ preserves finite meets.

The modal operator \square

(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;

Proof.

$$
\frac{P \rightarrow Q \vdash P \rightarrow Q}{(P \rightarrow Q) \wedge P \vdash Q}
$$

By the counit of adjunction $-\wedge P \dashv P \rightarrow-$.

The modal operator \square

(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;

Proof.

$$
\frac{(P \rightarrow Q) \wedge P \vdash Q}{\square((P \rightarrow Q) \wedge P) \vdash \square Q}
$$

By (i).

The modal operator \square

(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;

Proof.

$$
\frac{\square((P \rightarrow Q) \wedge P) \vdash \square Q}{\square(P \rightarrow Q) \wedge \square P \vdash \square Q}
$$

Because \square preserves meets.

The modal operator \square

(i) If $P \vdash Q$ then $\square P \vdash \square Q$;
(ii) $\square P \vdash P$;
(iii) $\square P \vdash \square \square P$;
(iv) $\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q$;

Proof.

$$
\frac{\square(P \rightarrow Q) \wedge \square P \vdash \square Q}{\square(P \rightarrow Q) \vdash \square P \rightarrow \square Q}
$$

Again, by the adjunction $-\wedge P \dashv P \rightarrow-$.

Invariant coequations

Let $f:\langle A, \alpha\rangle \rightarrow\langle B, \beta\rangle$ and $P \nrightarrow A$ be given. We let $\exists_{f} P$ denote the image of the composite $P \longleftrightarrow A \longrightarrow B$.

Invariant coequations

Let $P \subseteq U H C$. We say that P is endomorphism-invariant just in case, for every "repainting"

$$
p: U H C \longrightarrow C,
$$

equivalently, every homomorphism $\widetilde{p}: H C \rightarrow H C$, we have

$$
\exists_{\widetilde{p}} P \leq P .
$$

Invariant coequations

Let $P \subseteq U H C$. We say that P is endomorphism-invariant just in case, for every "repainting"

$$
p: U H C \longrightarrow C,
$$

equivalently, every homomorphism $\widetilde{p}: H C \rightarrow H C$, we have

$$
\exists_{c \in U H C}(\widetilde{p}(c)=x \wedge P(c)) \vdash P(x) .
$$

Invariant coequations

Let $P \subseteq U H C$. We say that P is endomorphism-invariant just in case, for every "repainting"

$$
p: U H C \longrightarrow C,
$$

equivalently, every homomorphism $\widetilde{p}: H C \rightarrow H C$, we have

$$
\exists_{c \in U H C}(\widetilde{p}(c)=x \wedge P(c)) \vdash P(x) .
$$

In other words, however we repaint $H C$, the elements of P are again (under this new coloring) elements of P.

Definition of \square

Let $P \subseteq U H C$. Define

$$
\mathcal{I}_{P}=\left\{Q \leq U H C \mid \forall p: H C \longrightarrow H C\left(\exists_{p} Q \leq P\right)\right\} .
$$

Definition of \square

Let $P \subseteq U H C$. Define

$$
\mathcal{I}_{P}=\left\{Q \leq U H C \mid \forall p: H C \longrightarrow H C\left(\exists_{p} Q \leq P\right)\right\} .
$$

That is, \mathcal{I}_{P} is the collection of all those coequations Q such that, however we "repaint" $U H C$, the image of Q still lands in P.

Definition of \square

Let $P \subseteq U H C$. Define

$$
\mathcal{I}_{P}=\left\{Q \leq U H C \mid \forall p: H C \longrightarrow H C\left(\exists_{p} Q \leq P\right)\right\} .
$$

That is, \mathcal{I}_{P} is the collection of all those coequations Q such that, however we "repaint" $U H C$, the image of Q still lands in P.

In particular, if $Q \in \mathcal{I}_{P}$, then $Q \vdash P$.

Definition of \square

Let $P \subseteq U H C$. Define

$$
\mathcal{I}_{P}=\left\{Q \leq U H C \mid \forall p: H C \longrightarrow H C\left(\exists_{p} Q \leq P\right)\right\} .
$$

We define a functor $\square: \operatorname{Sub}(U H C) \rightarrow \operatorname{Sub}(U H C)$ by

$$
\nabla P=\bigvee \mathcal{I}_{P}
$$

Then $\boxtimes P$ is the greatest invariant subobject of $U H C$ contained in P.

Definition of \square

We define a functor $\square: \mathrm{Sub}(U H C) \rightarrow \mathrm{Sub}(U H C)$ by

$$
\boxtimes P=\bigvee \mathcal{I}_{P}
$$

That is, $\square P$ satisfies the following:

- For all $p: H C \rightarrow H C, \exists_{p} \boxtimes P \vdash \nabla P$.

Definition of \square

We define a functor $\square: \mathrm{Sub}(U H C) \rightarrow \mathrm{Sub}(U H C)$ by

$$
\boxtimes P=\bigvee \mathcal{I}_{P}
$$

That is, $\square P$ satisfies the following:

- For all $p: H C \rightarrow H C, \exists_{p} \boxtimes P \vdash \boxtimes P$.
- If $Q \vdash P$ and for all $p: H C \rightarrow H C, \exists_{p} Q \vdash Q$, then $Q \vdash \boxtimes P$.

Example (cont.)

The coequation P.

Example (cont.)

P is not invariant.

Example (cont.)

The coequation $\boxtimes P$.

\square is S 4

One can show that \boxtimes is an S 4 operator.
(i) If $P \vdash Q$ then $\boxtimes P \vdash \boxtimes Q$;
(ii) $\boxtimes P \vdash P$;
(iii) $\boxtimes P \vdash \boxtimes \square P$;
(iv) $\boxtimes(P \rightarrow Q) \vdash \boxtimes P \rightarrow \square Q$;

∇ is S 4

One can show that \boxtimes is an S 4 operator.
(i) If $P \vdash Q$ then $\boxtimes P \vdash \boxtimes Q$;
(ii) $\square P \vdash P$;
(iii) $\boxtimes P \vdash \boxtimes \square P$;
(iv) $\boxtimes(P \rightarrow Q) \vdash \boxtimes P \rightarrow \square Q$;
(i) - (iii) follow from the fact that \square is a comonad, as before.

∇ is S 4

One can show that \square is an S 4 operator.
(i) If $P \vdash Q$ then $\boxtimes P \vdash \boxtimes Q$;
(ii) $\boxtimes P \vdash P$;
(iii) $\boxtimes P \vdash \square \boxtimes P$;
(iv) $\square(P \rightarrow Q) \vdash \boxtimes P \rightarrow \square Q$;
(iv) requires an argument that the meet of two invariant coequations is again invariant. This is not difficult.

Outline

Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Outline

I. Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square P$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square P$. Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \boxtimes P$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$. Lemma. $[\square P] \models P$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$.
Lemma. $[\square P] \models P$.
Lemma. $\square \square P \leq \square \square P$, i.e., if P is invariant,then so is $\square P$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$.
Lemma. $[\square P] \models P$.
Lemma. $\square \square P \leq \square \square P$.
Theorem. Gen $\operatorname{Mod} P=\square \square P$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$.
Lemma. $[\square P] \models P$.
Lemma. $\square \square P \leq \square \square P$.
Theorem. Gen Mod $P=\square \square P$.
Proof. From the above, we see that $\operatorname{Mod} P \models \square \square P$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$.
Lemma. $[\square P] \models P$.
Lemma. $\square \square P \leq \square \square P$.
Theorem. Gen Mod $P=\square \square P$.
Proof. From the above, we see that $\operatorname{Mod} P \models \square \square P$. Suppose that $\operatorname{Mod} P \models Q$. Then $[\square P] \models Q$.

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$.
Lemma. $[\square P] \models P$.
Lemma. $\square \square P \leq \square \square P$.
Theorem. Gen Mod $P=\square \square P$.
Proof. From the above, we see that $\operatorname{Mod} P \models \square \square P$. Suppose that $\operatorname{Mod} P \models Q$. Then $[\square P] \models Q$. Hence:

The invariance theorem

Lemma. $\langle A, \alpha\rangle \models P$ iff $\langle A, \alpha\rangle \models \square \square P$.
Lemma. $[\square P] \models P$.
Lemma. $\square \square P \leq \square \square P$.
Theorem. Gen Mod $P=\square \square P$.
Proof. From the above, we see that $\operatorname{Mod} P \models \square \square P$. Suppose that $\operatorname{Mod} P \models Q$. Then $[\square P] \models Q$. Hence:

That is, $\square \square P \vdash Q$.

Commutativity of \square, \square

As we saw (without proof), Lemma. $\square \square P \leq \square \square P$.

That is, the greatest subcoalgebra of an endomorphism invariant predicate is itself invariant.

Commutativity of \square, \square

As we saw (without proof), Lemma. $\square \square P \leq \square \square P$. Question: When is that an equality?

Commutativity of \square, \boxtimes

As we saw (without proof), Lemma. $\square \square P \leq \square \square P$. Theorem. If Γ preserves non-empty intersections, then $\square \square P=\square \square P$.

Commutativity of \square, \boxtimes

As we saw (without proof),
Lemma. $\square \square P \leq \square \square P$.
Theorem. If Γ preserves non-empty intersections, then $\square \square P=\square \square P$.

In this case, subcoalgebras are closed under arbitrary intersections.

A counterexample

Consider the functor $\mathcal{F}:$ Set \rightarrow Set taking a set X to the filters on X.
\mathcal{F} does not preserve non-empty intersections.

A counterexample

Consider the functor $\mathcal{F}:$ Set \rightarrow Set taking a set X to the filters on X.

A topological space X may be considered as a \mathcal{F}-coalgebra, via the structure map $X \rightarrow \mathcal{F} X$ taking an element $x \in X$ to the neighborhood filter containing x.

A counterexample

Consider the functor $\mathcal{F}:$ Set \rightarrow Set taking a set X to the filters on X.

A topological space X may be considered as a \mathcal{F}-coalgebra, via the structure map $X \rightarrow \mathcal{F} X$ taking an element $x \in X$ to the neighborhood filter containing x.

We will show an example of a space X together with a "coequation" $P \subseteq X$ such that $\square \square P \neq \square \square P$, i.e., $\square \square P \leq \square \square P$.

A counterexample

We will show an example of a space X together with a "coequation" $P \subseteq X$ such that $\square \square P \neq \square \square P$, i.e., $\square \square P \leq \square \square P$.

Consider the real interval $(0,1]$, topologized with open sets of the form $(x, 1]$ for $x \in X$.

A counterexample

We will show an example of a space X together with a "coequation" $P \subseteq X$ such that $\square \square P \neq \square \square P$, i.e., $\square \square P \leq \square \square P$.

Consider the real interval $(0,1]$, topologized with open sets of the form $(x, 1]$ for $x \in X$. It is not difficult to show that the only non-trivial endo-invariant subset of $(0,1]$ is $\{1\}$.

A counterexample

We will show an example of a space X together with a "coequation" $P \subseteq X$ such that $\square \square P \neq \square \square P$, i.e., $\square \square P \leq \square \square P$.

Consider the real interval $(0,1]$, topologized with open sets of the form $(x, 1]$ for $x \in X$. It is not difficult to show that the only non-trivial endo-invariant subset of $(0,1]$ is $\{1\}$. Let $P=\left(\frac{1}{2}, 1\right]$.

A counterexample

We will show an example of a space X together with a "coequation" $P \subseteq X$ such that $\square \square P \neq \square \square P$, i.e., $\square \square P \leq \square \square P$.

Let $P=\left(\frac{1}{2}, 1\right]$. Then $\square P=P$ and so $\square \square P=\{1\}$.

A counterexample

We will show an example of a space X together with a "coequation" $P \subseteq X$ such that $\square \square P \neq \square \square P$, i.e., $\square \square P \leq \square \square P$.

Let $P=\left(\frac{1}{2}, 1\right]$. Then $\square P=P$ and so $\square \square P=\{1\}$. On the other hand, $\square P=\{1\}$, and so $\square \square P=\emptyset$.

Outline

I. Coequations
II. Conditional coequations
III. Horn coequations
IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

Outline

I. Cocquations
II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)
V. Birkhoff's completeness theorem
VI. Dualizing deductive closure
VII. The \square operator
VIII. The \square operator
IX. The invariance theorem
X. Commutativity of \square, \square

