
The Formal Dual of Birkhoff’s
Completeness Theorem

Jesse Hughes

jesseh@cs.kun.nl

University of Nijmegen

The Formal Dual of Birkhoff’s Completeness Theorem – p.1/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of ,

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of � , �

The Formal Dual of Birkhoff’s Completeness Theorem – p.2/26



Coequations
Let U a H and C ∈ C be injective with respect to
S-morphisms.
A coequation over C is an S-morphism P // //UHC in C.
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Coequations
Let U a H and C ∈ C be injective with respect to
S-morphisms.
A coequation over C is an S-morphism P // //UHC in C.
We say 〈A, α〉 |=C P just in case for every homomorphism
p :〈A, α〉 //HC , we have Im(p) ≤ P .

A
∀p

//

∃
##

UHC

P
OO

OO
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Coequations
Let U a H and C ∈ C be injective with respect to
S-morphisms.
A coequation over C is an S-morphism P // //UHC in C.
We say 〈A, α〉 |=C P just in case for every homomorphism
p :〈A, α〉 //HC , we have Im(p) ≤ P .

〈A, α〉
∀p

//

∃ $$

HC

[P ]
OO

OO

Here, [P ] is the largest subcoalgebra of HC contained in
P .

The Formal Dual of Birkhoff’s Completeness Theorem – p.3/26



Coequations
Let U a H and C ∈ C be injective with respect to
S-morphisms.
A coequation over C is an S-morphism P // //UHC in C.
We say 〈A, α〉 |=C P just in case for every homomorphism
p :〈A, α〉 //HC , we have Im(p) ≤ P .
Thus, 〈A, α〉 |=C P iff 〈A, α〉 ∈ Proj([P ]), i.e.,

Hom(〈A, α〉, HC) ∼= Hom(〈A, α〉, [P ]).
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Example

The cofree coalgebra H2
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Example

A coequation.

The Formal Dual of Birkhoff’s Completeness Theorem – p.4/26



Example

This coalgebra satisfies P .
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Example

Under any coloring, the elements of the coalgebra map to
elements of P .

The Formal Dual of Birkhoff’s Completeness Theorem – p.4/26



Example

This coalgebra doesn’t satisfy P .
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Example

If we paint the circle red, it isn’t mapped to an element of
P .
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Comparing coequations and equations

Algebras Coalgebras

Projective set of variables X Injective set of colors C

Set of equations Coequation

E //
//UFX P // //UHC

q :FX // //〈Q, ν〉 i :[P ] // //HC

|= as q-injective |= as i-projective
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Conditional coequations
Let P, Q ≤ UHC.
We write 〈A, α〉 |=C P ⇒ Q just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤ P , we have Im(p) ≤ Q.
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Conditional coequations
Let P, Q ≤ UHC.
We write 〈A, α〉 |=C P ⇒ Q just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤ P , we have Im(p) ≤ Q.

A
p

//

∃
##

UHC

P
OO

OO

⇒

A
p

//

∃
##

UHC

Q
OO

OO
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Conditional coequations
Let P, Q ≤ UHC.
We write 〈A, α〉 |=C P ⇒ Q just in case, for every
p :〈A, α〉 //HC such that Im(p) ≤ P , we have Im(p) ≤ Q.

〈A, α〉 |= P ⇒ Q just in case every homomorphism
〈A, α〉 //[P ] factors through [Q], i.e.,

Hom(〈A, α〉, [P ]) ∼= Hom(〈A, α〉, [Q]).
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Example

Recall our coequation P .
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Example

Let Q be the coequation above.
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Example

P
Q

And consider the “conditional coequation” P ⇒ Q.
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Example

Q
P

This coalgebra satisfies P ⇒ Q.
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Example

Q
P

However we paint it so that it factors through P , it also
factors through Q.
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Example

Q
P

(It also satisfies Q ⇒ P .)
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Dualizing negations
Let P ≤ UHC.
We write 〈A, α〉 |=C P just in case for every p :A //C , it is
not the case Im(p̃) ≤ P .
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Dualizing negations
Let P ≤ UHC.
We write 〈A, α〉 |=C P just in case for every p :A //C , it is
not the case Im(p̃) ≤ P .
Equivalently, there is no homomorphism 〈A, α〉 //[P ] , i.e.,

Hom(〈A, α〉, [P ]) = ∅.
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Dualizing negations
Let P ≤ UHC.
We write 〈A, α〉 |=C P just in case for every p :A //C , it is
not the case Im(p̃) ≤ P .
Equivalently, there is no homomorphism 〈A, α〉 //[P ] , i.e.,

Hom(〈A, α〉, [P ]) = ∅.

No matter how we paint A, there is some element a ∈ A
that doesn’t land in P .

The Formal Dual of Birkhoff’s Completeness Theorem – p.8/26



Dualizing negations
Let P ≤ UHC.
We write 〈A, α〉 |=C P just in case for every p :A //C , it is
not the case Im(p̃) ≤ P .

No matter how we paint A, there is some element a ∈ A
that doesn’t land in P .

Note: This does not mean that 〈A, α〉 |= ¬P ! “Something
in A does not land in P ,” is not the same as, “Everything in
A does not land in P .”
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Example

The coalgebra on the left satisfies P .
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Example

No matter how we paint it, the square does not land in P
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Some co-Birkhoff-type theorems
Define

ThV = {P // //UHC | V |=C P}
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Some co-Birkhoff-type theorems
Define

ThV = {P // //UHC | V |=C P}

ImpV = {P ⇒C Q | V |=C P ⇒ Q}
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Some co-Birkhoff-type theorems
Define

ThV = {P // //UHC | V |=C P}

ImpV = {P ⇒C Q | V |=C P ⇒ Q}

HornV = ImpV ∪ {P
C
| V |=C P}
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Some co-Birkhoff-type theorems
Define

ThV = {P // //UHC | V |=C P}

ImpV = {P ⇒C Q | V |=C P ⇒ Q}

HornV = ImpV ∪ {P
C
| V |=C P}

Further, let ModS denote the models of S for S a class of

coequations, conditional coequations or Horn coequations.
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Some co-Birkhoff-type theorems

Theorem (Birkhoff covariety theorem).

Mod ThV = SHΣV

Theorem (Quasi-covariety theorem).

Mod ImpV = HΣV

Theorem (Horn covariety theorem).

ModHornV = HΣ+V
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Birkhoff’s deduction theorem
Fix a set X of variables and let E be a set of equations over
X . E is deductively closed just in case E satisfies the
following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) ti1 = ti2 ∈ E and f ∈ Σ⇒f(~t1) = f(~t2) ∈ E;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.
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Birkhoff’s deduction theorem
Fix a set X of variables and let E be a set of equations over
X . E is deductively closed just in case E satisfies the
following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) ti1 = ti2 ∈ E and f ∈ Σ⇒f(~t1) = f(~t2) ∈ E;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

Items (i) – (iv) ensure that E is a congruence and hence
uniquely determines a quotient of FX .
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Birkhoff’s deduction theorem
Fix a set X of variables and let E be a set of equations over
X . E is deductively closed just in case E satisfies the
following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) ti1 = ti2 ∈ E and f ∈ Σ⇒f(~t1) = f(~t2) ∈ E;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

Item (v) ensures that E is a stable

�

-algebra, i.e., closed
under substitutions.

The Formal Dual of Birkhoff’s Completeness Theorem – p.12/26



Birkhoff’s deduction theorem
E is deductively closed just in case E satisfies the
following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) ti1 = ti2 ∈ E and f ∈ Σ⇒f(~t1) = f(~t2) ∈ E;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

Let Ded :Rel(UFX) // Rel(UFX) be the closure operation
taking a set E of equations over X to its deductive closure.
We can decompose Ded into two closure operators.
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Birkhoff’s deduction theorem
E is deductively closed just in case E satisfies the
following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) ti1 = ti2 ∈ E and f ∈ Σ⇒f(~t1) = f(~t2) ∈ E;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

The first takes E to the congruence it generates.
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Birkhoff’s deduction theorem
E is deductively closed just in case E satisfies the
following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) ti1 = ti2 ∈ E and f ∈ Σ⇒f(~t1) = f(~t2) ∈ E;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

The second closes it under substitution of terms for
variables.
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Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem). For

any E ∈ Rel(UFX), Th Mod(E) = Ded(E)
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Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem). For

any E ∈ Rel(UFX), Th Mod(E) = Ded(E)

Compare this to the variety theorem.

Theorem (Birkhoff variety theorem).

ModThV = HSPV
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Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem). For

any E ∈ Rel(UFX), Th Mod(E) = Ded(E)

ThMod(E) satisfies the following fixed point description.

• Mod(E) |= Th Mod(E);

• If Mod(E) |= E ′, then E ′ ⊆ Th Mod(E).
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Dualizing the completeness theorem
ThMod(E) satisfies the following fixed point description.

• Mod(E) |= Th Mod(E);

• If Mod(E) |= E ′, then E ′ ⊆ Th Mod(E).

We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P )”, written GenMod(P ).
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Dualizing the completeness theorem
We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P )”, written GenMod(P ).

GenMod(P ) satisfies the following fixed point description.

• Mod(P ) |= Gen Mod(E);

• If Mod(P ) |= P ′, then GenMod(P ) ⊆ P ′.
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Dualizing the completeness theorem
We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P )”, written GenMod(P ).

GenMod(P ) satisfies the following fixed point description.

• Mod(P ) |= Gen Mod(E);

• If Mod(P ) |= P ′, then GenMod(P ) ⊆ P ′.

Recall that sets of equations correspond to coequations,
so this is an appropriate dualization.
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Dualizing the completeness theorem
We dualize this fixed point description to yield its
coalgebraic analogue. We call the analogue the “generating
coequation for Mod(P )”, written GenMod(P ).

GenMod(P ) satisfies the following fixed point description.

• Mod(P ) |= Gen Mod(E);

• If Mod(P ) |= P ′, then GenMod(P ) ⊆ P ′.

Recall that sets of equations correspond to coequations,
so this is an appropriate dualization.

A generating coequation gives a measure of the
“coequational commitment” of V.
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Dualizing deductive closure

Theorem (Birkhoff completeness theorem). For

any E ∈ Rel(UFX), Th Mod(E) = Ded(E)

To dualize Ded, we consider again its components.

Algebras Coalgebras

Projective set of variables X Injective set of colors C

Set of equations Coequation

E //
//UFX P // //UHC

q :FX // //〈Q, ν〉 i : [P ] // //HC

Closure under substitution
Greatest endo-invariant sub-

object
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Dualizing deductive closure

Theorem (Birkhoff completeness theorem). For

any E ∈ Rel(UFX), Th Mod(E) = Ded(E)

To dualize Ded, we consider again its components.

Algebras Coalgebras

Projective set of variables X Injective set of colors C

Set of equations Coequation

E //
//UFX P // //UHC

Congruence generated by E Greatest subcoalgebra in P

Closure under substitution
Greatest endo-invariant sub-

object

The Formal Dual of Birkhoff’s Completeness Theorem – p.15/26



Dualizing deductive closure

Theorem (Birkhoff completeness theorem). For

any E ∈ Rel(UFX), Th Mod(E) = Ded(E)

To dualize Ded, we consider again its components.

Algebras Coalgebras

Projective set of variables X Injective set of colors C
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II. Conditional coequations
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IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem
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VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of � , �
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The modal operator

Let P,Q // //A be given. We write P ` Q if there is a map
P //Q such that the diagram below commutes.

P Q

A

//

��

��
,,

, ��

����
�
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The modal operator

Let P,Q // //A be given. We write P ` Q if there is a map
P //Q such that the diagram below commutes.

P Q

A

// //

��

��
,,

, ��

����
�

In fact, P // //Q is necessarily an S-morphism.
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The modal operator

Let �

:Sub(UHC) // Sub(UHC) be the composite U [−].
In other terms, � is a comonad taking a coequation P to
the largest subcoalgebra 〈A, α〉 of HC such that A ≤ P .
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The modal operator

Let �

:Sub(UHC) // Sub(UHC) be the composite U [−].
In other terms, � is a comonad taking a coequation P to
the largest subcoalgebra 〈A, α〉 of HC such that A ≤ P .

As is well-known, if Γ preserves pullbacks of
S-morphisms, then � is an S4 operator.

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →
�

Q;
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The modal operator

Let �

:Sub(UHC) // Sub(UHC) be the composite U [−].
In other terms, � is a comonad taking a coequation P to
the largest subcoalgebra 〈A, α〉 of HC such that A ≤ P .

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

(i) follows from functoriality.
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The modal operator

Let �

:Sub(UHC) // Sub(UHC) be the composite U [−].
In other terms, � is a comonad taking a coequation P to
the largest subcoalgebra 〈A, α〉 of HC such that A ≤ P .

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

(ii) and (iii) are the counit and comultiplication of the

comonad.

The Formal Dual of Birkhoff’s Completeness Theorem – p.17/26



The modal operator

Let �

:Sub(UHC) // Sub(UHC) be the composite U [−].
In other terms, � is a comonad taking a coequation P to
the largest subcoalgebra 〈A, α〉 of HC such that A ≤ P .

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

(iv) follows from the fact that U :EΓ
//E preserves finite

meets.
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The modal operator
(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

Proof.

P → Q ` P → Q

(P → Q) ∧ P ` Q

By the counit of adjunction − ∧ P a P → −.
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The modal operator
(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

Proof.

(P → Q) ∧ P ` Q

�

((P → Q) ∧ P ) `

�

Q

By (i).
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The modal operator
(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

Proof.

�

((P → Q) ∧ P ) `
�

Q

�

(P → Q) ∧
�

P `

�

Q

Because

�

preserves meets.
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The modal operator
(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

Proof.

�

(P → Q) ∧

�

P `
�

Q

�

(P → Q)
�̀

P →

�

Q

Again, by the adjunction − ∧ P a P → −.
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Invariant coequations

Let f :〈A, α〉 //〈B, β〉 and P // //A be given. We let ∃fP

denote the image of the composite P // //A //B.

P
��

��

// // ∃fP
��

��

A // B
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Invariant coequations
Let P ⊆ UHC. We say that P is endomorphism-invariant
just in case, for every “repainting”

p :UHC //C,

equivalently, every homomorphism p̃ :HC //HC , we have

∃p̃P ≤ P.
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Invariant coequations
Let P ⊆ UHC. We say that P is endomorphism-invariant
just in case, for every “repainting”

p :UHC //C,

equivalently, every homomorphism p̃ :HC //HC , we have

∃c∈UHC(p̃(c) = x ∧ P (c)) ` P (x).
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Invariant coequations
Let P ⊆ UHC. We say that P is endomorphism-invariant
just in case, for every “repainting”

p :UHC //C,

equivalently, every homomorphism p̃ :HC //HC , we have

∃c∈UHC(p̃(c) = x ∧ P (c)) ` P (x).

In other words, however we repaint HC, the elements of P

are again (under this new coloring) elements of P .
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Definition of
Let P ⊆ UHC. Define

IP = {Q ≤ UHC | ∀p :HC //HC (∃pQ ≤ P )}.
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Definition of
Let P ⊆ UHC. Define

IP = {Q ≤ UHC | ∀p :HC //HC (∃pQ ≤ P )}.

That is, IP is the collection of all those coequations Q
such that, however we “repaint” UHC, the image of Q still
lands in P .
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Definition of
Let P ⊆ UHC. Define

IP = {Q ≤ UHC | ∀p :HC //HC (∃pQ ≤ P )}.

That is, IP is the collection of all those coequations Q
such that, however we “repaint” UHC, the image of Q still
lands in P .

In particular, if Q ∈ IP , then Q ` P .
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Definition of
Let P ⊆ UHC. Define

IP = {Q ≤ UHC | ∀p :HC //HC (∃pQ ≤ P )}.

We define a functor �

:Sub(UHC) // Sub(UHC) by

�

P =
∨

IP .

Then �

P is the greatest invariant subobject of UHC con-

tained in P .
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Definition of
We define a functor �

:Sub(UHC) // Sub(UHC) by

�

P =
∨

IP .

That is, �

P satisfies the following:

• For all p :HC //HC , ∃p

�

P `
�

P .
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Definition of
We define a functor �

:Sub(UHC) // Sub(UHC) by

�

P =
∨

IP .

That is, �

P satisfies the following:

• For all p :HC //HC , ∃p

�

P `
�

P .

• If Q ` P and for all p :HC //HC , ∃pQ ` Q, then
Q `

�

P .
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Example (cont.)

The coequation P .
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Example (cont.)

P is not invariant.
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Example (cont.)

The coequation �

P .
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is S4

One can show that � is an S4 operator.

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;
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is S4

One can show that � is an S4 operator.

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

(i) - (iii) follow from the fact that � is a comonad, as before.
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is S4

One can show that � is an S4 operator.

(i) If P ` Q then �

P `

�

Q;

(ii) �

P ` P ;

(iii) �

P `

� �

P ;

(iv) �

(P → Q) `

�

P →

�

Q;

(iv) requires an argument that the meet of two invariant co-

equations is again invariant. This is not difficult.
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Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of � , �
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Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of � , �
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

�

P .
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

�

P .

Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

�

P .
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .

Lemma.

� �

P ≤

� �

P , i.e., if P is invariant,then
so is

�

P .
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .

Lemma.

� �

P ≤

� �

P .

Theorem. GenMod P =

� �

P .
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .

Lemma.

� �

P ≤

� �

P .

Theorem. GenMod P =

� �

P .

Proof. From the above, we see that ModP |=

� �

P .
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .

Lemma.

� �

P ≤

� �

P .

Theorem. GenMod P =

� �

P .

Proof. From the above, we see that ModP |=

� �

P .
Suppose that Mod P |= Q. Then [

�

P ] |= Q.
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .

Lemma.

� �

P ≤

� �

P .

Theorem. GenMod P =

� �

P .

Proof. From the above, we see that ModP |=

� �

P .
Suppose that Mod P |= Q. Then [

�

P ] |= Q. Hence:

U [

�

P ] // //

%%

UHC

Q
OO

OO
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The invariance theorem
Lemma. 〈A, α〉 |= P iff 〈A, α〉 |=

� �

P .

Lemma. [

�

P ] |= P .

Lemma.

� �

P ≤

� �

P .

Theorem. GenMod P =

� �

P .

Proof. From the above, we see that ModP |=

� �

P .
Suppose that Mod P |= Q. Then [

�

P ] |= Q. Hence:

� �

P // //

%%

UHC

Q
OO

OO

That is,

� �

P ` Q.
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Commutativity of ,
As we saw (without proof),
Lemma.

� �

P ≤

� �

P .

That is, the greatest subcoalgebra of an endomorphism in-

variant predicate is itself invariant.
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Commutativity of ,
As we saw (without proof),
Lemma.

� �

P ≤

� �

P .

Question: When is that an equality?
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Commutativity of ,
As we saw (without proof),
Lemma.

� �

P ≤

� �

P .

Theorem. If Γ preserves non-empty intersections,
then

� �

P =

� �

P .
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Commutativity of ,
As we saw (without proof),
Lemma.

� �

P ≤

� �

P .

Theorem. If Γ preserves non-empty intersections,
then

� �

P =

� �

P .

In this case, subcoalgebras are closed under arbitrary inter-

sections.
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A counterexample

Consider the functor F :Set //Set taking a set X to the
filters on X .

F does not preserve non-empty intersections.
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A counterexample

Consider the functor F :Set //Set taking a set X to the
filters on X .

A topological space X may be considered as a
F -coalgebra, via the structure map X //FX taking an
element x ∈ X to the neighborhood filter containing x.
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A counterexample

Consider the functor F :Set //Set taking a set X to the
filters on X .

A topological space X may be considered as a
F -coalgebra, via the structure map X //FX taking an
element x ∈ X to the neighborhood filter containing x.

We will show an example of a space X together with a

“coequation” P ⊆ X such that � �

P 6=

� �

P , i.e.,

� �

P ≤

� �

P .
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A counterexample
We will show an example of a space X together with a
“coequation” P ⊆ X such that � �

P 6=

� �

P , i.e.,

� �

P ≤

� �

P .

Consider the real interval (0, 1], topologized with open sets

of the form (x, 1] for x ∈ X .
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A counterexample
We will show an example of a space X together with a
“coequation” P ⊆ X such that � �

P 6=

� �

P , i.e.,

� �

P ≤

� �

P .

Consider the real interval (0, 1], topologized with open sets

of the form (x, 1] for x ∈ X . It is not difficult to show that

the only non-trivial endo-invariant subset of (0, 1] is {1}.
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A counterexample
We will show an example of a space X together with a
“coequation” P ⊆ X such that � �

P 6=

� �

P , i.e.,

� �

P ≤

� �

P .

Consider the real interval (0, 1], topologized with open sets

of the form (x, 1] for x ∈ X . It is not difficult to show that

the only non-trivial endo-invariant subset of (0, 1] is {1}.

Let P = (1
2
, 1].
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A counterexample
We will show an example of a space X together with a
“coequation” P ⊆ X such that � �

P 6=

� �

P , i.e.,

� �

P ≤

� �

P .

Let P = (1
2
, 1]. Then �

P = P and so � �

P = {1}.
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A counterexample
We will show an example of a space X together with a
“coequation” P ⊆ X such that � �

P 6=

� �

P , i.e.,

� �

P ≤

� �

P .

Let P = (1
2
, 1]. Then �

P = P and so � �

P = {1}. On

the other hand, �

P = {1}, and so � �

P = ∅.
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Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of � , �
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Outline
I. Coequations

II. Conditional coequations

III. Horn coequations

IV. Some co-Birkhoff type theorems (again)

V. Birkhoff’s completeness theorem

VI. Dualizing deductive closure

VII. The � operator

VIII. The � operator

IX. The invariance theorem

X. Commutativity of � , �
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