
Knowledge in Norms: A Sketch

Jesse Hughes

jesseh@cs.kun.nl

University of Nijmegen

Knowledge in Norms: A Sketch – p.1/11



Aims
Some initial goals:

• Express: “A function of o is f .”

Knowledge in Norms: A Sketch – p.2/11



Aims
Some initial goals:

• Express: “A function of o is f .” (in terms of user plans
U )

Knowledge in Norms: A Sketch – p.2/11



Aims
Some initial goals:

• Express: “A function of o is f .” (in terms of user plans
U )

• Require: “If x executes U , then f ought to attain.”

Knowledge in Norms: A Sketch – p.2/11



Aims
Some initial goals:

• Express: “A function of o is f .” (in terms of user plans
U )

• Require: “If x executes U , then f ought to attain.”

• Express: “x knows the plan U .”

Knowledge in Norms: A Sketch – p.2/11



Aims
Some initial goals:

• Express: “A function of o is f .” (in terms of user plans
U )

• Require: “If x executes U , then f ought to attain.”

• Express: “x knows the plan U .”

• Require: “For x to execute U , x must know U .”

Knowledge in Norms: A Sketch – p.2/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Knowledge in Norms: A Sketch – p.3/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Artifacts (o, p, q, . . . ∈ Art)

Knowledge in Norms: A Sketch – p.3/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Artifacts (o, p, q, . . . ∈ Art)
Relations: Atomic (R,S, T, . . . ∈ Atom)

Knowledge in Norms: A Sketch – p.3/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Artifacts (o, p, q, . . . ∈ Art)
Relations: Atomic (R,S, T, . . . ∈ Atom)

Relations come with types

User ×User × . . . × User ×Art ×Art × . . . × Art .

Knowledge in Norms: A Sketch – p.3/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Artifacts (o, p, q, . . . ∈ Art)
Relations: Atomic (R,S, T, . . . ∈ Atom)

Relations come with types

User ×User × . . . × User ×Art ×Art × . . . × Art .

Let Q be first-order logic built on these ingredients.

Knowledge in Norms: A Sketch – p.3/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Artifacts (o, p, q, . . . ∈ Art)
Relations: Atomic (R,S, T, . . . ∈ Atom)

Relations come with types

User ×User × . . . × User ×Art ×Art × . . . × Art .

Let Q be first-order logic built on these ingredients.

To Q, we add a deontic operator ©, obtaining QD*.

Knowledge in Norms: A Sketch – p.3/11



Basic ingredients
Constants: Users (x, y, z, . . . ∈ User )

Artifacts (o, p, q, . . . ∈ Art)
Relations: Atomic (R,S, T, . . . ∈ Atom)

Relations come with types

User ×User × . . . × User ×Art ×Art × . . . × Art .

Let Q be first-order logic built on these ingredients.

To Q, we add a deontic operator ©, obtaining QD*.
The logic QD* includes the constant domain assumption.

Knowledge in Norms: A Sketch – p.3/11



Functions and plans
Houkes: Knowledge of a user plan is necessary and
sufficient evidence of knowledge of artifact function.

Knowledge in Norms: A Sketch – p.4/11



Functions and plans
Houkes: Knowledge of a user plan is necessary and
sufficient evidence of knowledge of artifact function.

This suggests that we identify user plans and functions.

Knowledge in Norms: A Sketch – p.4/11



Functions and plans
Houkes: Knowledge of a user plan is necessary and
sufficient evidence of knowledge of artifact function.

This suggests that we identify user plans and functions.

But: functions are goal-directed.

Knowledge in Norms: A Sketch – p.4/11



Functions and plans
Houkes: Knowledge of a user plan is necessary and
sufficient evidence of knowledge of artifact function.

This suggests that we identify user plans and functions.

But: functions are goal-directed.

We must represent the end of a user plan.

Knowledge in Norms: A Sketch – p.4/11



Functions and plans
Houkes: Knowledge of a user plan is necessary and
sufficient evidence of knowledge of artifact function.

This suggests that we identify user plans and functions.

But: functions are goal-directed.

We must represent the end of a user plan.

A goal is a state of affairs, a condition of the world . . .

Knowledge in Norms: A Sketch – p.4/11



Functions and plans
Houkes: Knowledge of a user plan is necessary and
sufficient evidence of knowledge of artifact function.

This suggests that we identify user plans and functions.

But: functions are goal-directed.

We must represent the end of a user plan.

A goal is a state of affairs, a condition of the world . . . a

formula of Q!

Knowledge in Norms: A Sketch – p.4/11



Abstract user plans

We augment QD* with a new type Plan (variables
U,U ′, . . .).

Knowledge in Norms: A Sketch – p.5/11



Abstract user plans

We augment QD* with a new type Plan (variables
U,U ′, . . .).
Each plan involves an artifact and an end.

Knowledge in Norms: A Sketch – p.5/11



Abstract user plans

We augment QD* with a new type Plan (variables
U,U ′, . . .).
Each plan involves an artifact and an end.

obj :Plan // Art

end :Plan //Q

Knowledge in Norms: A Sketch – p.5/11



Abstract user plans

We augment QD* with a new type Plan (variables
U,U ′, . . .).
Each plan involves an artifact and an end.

obj :Plan // Art

end :Plan //Q

Admittedly, this type looks a bit funky.

Knowledge in Norms: A Sketch – p.5/11



Abstract user plans

We augment QD* with a new type Plan (variables
U,U ′, . . .).
Each plan involves an artifact and an end.

obj :Plan // Art

end :Plan //Q

We could also add preconditions to a user plan, as in
dynamic logic.

pre :Plan // Q

Knowledge in Norms: A Sketch – p.5/11



Applications of Plans
Users apply user plans to achieve ends.

Knowledge in Norms: A Sketch – p.6/11



Applications of Plans
Users apply user plans to achieve ends.
Applications of plans (ought to) change the world.

Knowledge in Norms: A Sketch – p.6/11



Applications of Plans
Users apply user plans to achieve ends.
Applications of plans (ought to) change the world.
Application provides a transition structure on our set of
worlds.

app−(−,−) :World ×User ×Plan // World

Knowledge in Norms: A Sketch – p.6/11



Applications of Plans
Users apply user plans to achieve ends.
Applications of plans (ought to) change the world.
Application provides a transition structure on our set of
worlds.

app−(−,−) :World ×User ×Plan // World

app
w
(x, U) is the world resulting from user x applying

plan U in world w.

Knowledge in Norms: A Sketch – p.6/11



Applications of Plans
Users apply user plans to achieve ends.
Applications of plans (ought to) change the world.
Application provides a transition structure on our set of
worlds.

app−(−,−) :World ×User ×Plan // World

app
w
(x, U) is the world resulting from user x applying

plan U in world w.

Assumes: every user can execute every plan.

Knowledge in Norms: A Sketch – p.6/11



Alternative transitions

app−(−,−) :World ×User ×Plan //???

Type Assumptions

World Every user can perform every
plan; deterministic

1 + World Users may not perform certain
plans; deterministic

P(World) Users may not perform certain
plans; non-deterministic

Knowledge in Norms: A Sketch – p.7/11



Alternative transitions

app−(−,−) :World ×User ×Plan //???

Type Assumptions

World Every user can perform every
plan; deterministic

1 + World Users may not perform certain
plans; deterministic

P(World) Users may not perform certain
plans; non-deterministic

Knowledge in Norms: A Sketch – p.7/11



Alternative transitions

app−(−,−) :World ×User ×Plan //???

Type Assumptions

World Every user can perform every
plan; deterministic

1 + World Users may not perform certain
plans; deterministic

P(World) Users may not perform certain
plans; non-deterministic

Knowledge in Norms: A Sketch – p.7/11



Alternative transitions

app−(−,−) :World ×User ×Plan //???

Type Assumptions

World Every user can perform every
plan; deterministic

1 + World Users may not perform certain
plans; deterministic

P(World) Users may not perform certain
plans; non-deterministic

Note: this perspective on applications of plans is
fundamentally coalgebraic!

Knowledge in Norms: A Sketch – p.7/11



A dynamic logic for applications
For each pair x ∈ User , U ∈ Plan , we add a modal
operator [x, U ].

Knowledge in Norms: A Sketch – p.8/11



A dynamic logic for applications
For each pair x ∈ User , U ∈ Plan , we add a modal
operator [x, U ].

w |= [x, U ]ϕ ⇔ for all w′ ∈ app
w
(x, U),

we have w′ |= ϕ.

Knowledge in Norms: A Sketch – p.8/11



A dynamic logic for applications
For each pair x ∈ User , U ∈ Plan , we add a modal
operator [x, U ].

w |= [x, U ]ϕ ⇔ After x applies U in w,
the formula ϕ attains.

Knowledge in Norms: A Sketch – p.8/11



A dynamic logic for applications
For each pair x ∈ User , U ∈ Plan , we add a modal
operator [x, U ].

w |= [x, U ]ϕ ⇔ After x applies U in w,
the formula ϕ attains.

Example:

[x, U ] © end(U).

Knowledge in Norms: A Sketch – p.8/11



A dynamic logic for applications
For each pair x ∈ User , U ∈ Plan , we add a modal
operator [x, U ].

w |= [x, U ]ϕ ⇔ After x applies U in w,
the formula ϕ attains.

Example:

[x, U ] © end(U).

After x applies U , the end of U ought to hold.

Knowledge in Norms: A Sketch – p.8/11



A dynamic logic for applications
For each pair x ∈ User , U ∈ Plan , we add a modal
operator [x, U ].

w |= [x, U ]ϕ ⇔ After x applies U in w,
the formula ϕ attains.

Example:

[x, U ] © end(U).

After x applies U , the end of U ought to hold.

Compare: ©[x, U ] end(U)

Knowledge in Norms: A Sketch – p.8/11



Knowledge operator?
Do we need an epistemic operator?

Knowledge in Norms: A Sketch – p.9/11



Knowledge operator?
Do we need an epistemic operator?

At first glance, it appears not.

Knowledge in Norms: A Sketch – p.9/11



Knowledge operator?
Do we need an epistemic operator?

At first glance, it appears not.

We want to express “x knows the plan U .”

Knowledge in Norms: A Sketch – p.9/11



Knowledge operator?
Do we need an epistemic operator?

At first glance, it appears not.

We want to express “x knows the plan U .”

But, U is not a formula. It is a term in our language.

Knowledge in Norms: A Sketch – p.9/11



Knowledge operator?
Do we need an epistemic operator?

At first glance, it appears not.

We want to express “x knows the plan U .”

But, U is not a formula. It is a term in our language.

Thus, we may as well use a relation to express this.

Knowledge in Norms: A Sketch – p.9/11



Knowledge operator?
Do we need an epistemic operator?

At first glance, it appears not.

We want to express “x knows the plan U .”

But, U is not a formula. It is a term in our language.

Thus, we may as well use a relation to express this.

Introduce: groks : User ×Plan .

Knowledge in Norms: A Sketch – p.9/11



Knowledge operator?
Do we need an epistemic operator?

At first glance, it appears not.

We want to express “x knows the plan U .”

But, U is not a formula. It is a term in our language.

Thus, we may as well use a relation to express this.

Introduce: groks : User ×Plan .

Epistemic operators can be added as the situation requires,
of course.

Knowledge in Norms: A Sketch – p.9/11



The total sketch
We have:

• a basic logic Q for describing the worlds;

Knowledge in Norms: A Sketch – p.10/11



The total sketch
We have:

• a basic logic Q for describing the worlds;

• an extension QD* of Q for ought-statements;

Knowledge in Norms: A Sketch – p.10/11



The total sketch
We have:

• a basic logic Q for describing the worlds;

• an extension QD* of Q for ought-statements;

• an extension QD* +DL for statements involving plan
execution;

Knowledge in Norms: A Sketch – p.10/11



The total sketch
We have:

• a basic logic Q for describing the worlds;

• an extension QD* of Q for ought-statements;

• an extension QD* +DL for statements involving plan
execution;

• a relation groks for expressing whether a user knows a
plan.

Knowledge in Norms: A Sketch – p.10/11



The total sketch
We have:

• a basic logic Q for describing the worlds;

• an extension QD* of Q for ought-statements;

• an extension QD* +DL for statements involving plan
execution;

• a relation groks for expressing whether a user knows a
plan.

With this starting point, one can work to represent
functional knowledge.

Knowledge in Norms: A Sketch – p.10/11



How to proceed
Further development requires:

• Philosophical resources on functional knowledge;

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Further development requires:

• Philosophical resources on functional knowledge;

• Further research in “multi-dimensional” modal logic.

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Further development requires:

• Philosophical resources on functional knowledge;

• Further research in “multi-dimensional” modal logic.

Clearly, these tasks must go hand-in-hand.

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Concrete steps:

• Clarify the logic QD* +DL!

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Concrete steps:

• Clarify the logic QD* +DL!

• Incorporate proper functions.

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Concrete steps:

• Clarify the logic QD* +DL!

• Incorporate proper functions.
• Represent “designer”, “proper”, etc.

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Concrete steps:

• Clarify the logic QD* +DL!

• Incorporate proper functions.
• Represent “designer”, “proper”, etc.
• Norms for proper function.

Knowledge in Norms: A Sketch – p.11/11



How to proceed
Concrete steps:

• Clarify the logic QD* +DL!

• Incorporate proper functions.
• Represent “designer”, “proper”, etc.
• Norms for proper function.

• Include epistemic operator for practical reasoning?

Knowledge in Norms: A Sketch – p.11/11


	Aims
	Basic ingredients
	Functions and plans
	Abstract user plans
	Applications of Plans
	Alternative transitions
	A dynamic logic for applications
	Knowledge operator?
	The total sketch
	How to proceed

