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The Birkhoff variety theorem

Let

�

:Set //Set be a polynomial functor, and X an
infinite set of variables.
Theorem (Birkhoff’s variety theorem (1935)). A

full subcategory V of Set

�

is closed under

• products,

• subalgebras and

• quotients (codomains of regular epis)

just in case V is definable by a set of equations E over
X, i.e.,

V = {〈A, α〉 | 〈A, α〉 |= E}.
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The covariety theorem

Let Γ:E //E be a functor bounded by C ∈ E .
Theorem. A full subcategory V of EΓ is closed under

• coproducts,

• images (codomains of epis) and

• (regular) subcoalgebras

just in case V is definable by a coequation ϕ over C,
i.e.,

V = {〈A, α〉 | 〈A, α〉 |= ϕ}.
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Coequations
A coequation over C is a subobject of UHC, the cofree
coalgebra over C.
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Coequations
A coequation over C is a subobject of UHC, the cofree
coalgebra over C.
A coalgebra 〈A, α〉 satisfies ϕ just in case, for every
homomorphism

p :〈A, α〉 //HC,

the image of p is contained in ϕ (i.e., Im(p) ≤ ϕ).

U〈A, α〉 //

&&

UHC

ϕ
_

LR

OO
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Example

The cofree coalgebra H2
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Example

A coequation.
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Example

This coalgebra satisfies ϕ.
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Example

Under any coloring, the elements of the coalgebra map to
elements of ϕ.
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Example

This coalgebra doesn’t satisfy ϕ.
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Example

If we paint the circle red, it isn’t mapped to an element of
ϕ.
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Coequations as predicates
Since a coequation ϕ over C is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
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Coequations as predicates
Since a coequation ϕ over C is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
Hence, the coequations over C come with a natural
structure. We can build new coequations out of old via ∧,
¬, ∀, etc.
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Coequations as predicates
Since a coequation ϕ over C is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
Coequation satisfaction can be stated in terms of predicate
satisfaction.
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Coequations as predicates
Since a coequation ϕ over C is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
Coequation satisfaction can be stated in terms of predicate
satisfaction.

〈A, α〉 satisfies ϕ just in case, for every p :〈A, α〉 //HC ,

Im(p) ≤ ϕ.
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Coequations as predicates
Since a coequation ϕ over C is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
Coequation satisfaction can be stated in terms of predicate
satisfaction.

〈A, α〉 satisfies ϕ just in case, for every p :〈A, α〉 //HC ,

∃a∈A(p(a) = x) ` ϕ(x).
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Birkhoff’s deduction theorem
A set of equations E is deductively closed just in case E
satisfies the following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) E is closed under the

�

-operations;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.
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Birkhoff’s deduction theorem
A set of equations E is deductively closed just in case E
satisfies the following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) E is closed under the

�

-operations;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

Items (i)–(iv) ensure that E is a congruence and hence

uniquely determines a quotient of FX .
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Birkhoff’s deduction theorem
A set of equations E is deductively closed just in case E
satisfies the following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) E is closed under the

�

-operations;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

Item (v) ensures that E is a stable

�

-algebra, i.e., closed

under substitutions.
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Birkhoff’s deduction theorem
A set of equations E is deductively closed just in case E
satisfies the following:

(i) x = x ∈ E;

(ii) t1 = t2 ∈ E ⇒ t2 = t1 ∈ E;

(iii) t1 = t2 ∈ E and t2 = t3 ∈ E ⇒ t1 = t3 ∈ E;

(iv) E is closed under the

�

-operations;

(v) t1 = t2 ∈ E ⇒ t1[t/x] = t2[t/x] ∈ E.

Theorem (Birkhoff completeness theorem).
E = T hEq(V) for some class V iff E is deductively
closed.
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Dualizing the completeness theorem
Theorem (Birkhoff completeness theorem).
E = T hEq(V) for some class V iff E is deductively
closed.

The duals of the closure conditions yield two modal opera-

tors in the coalgebraic setting.
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Dualizing the completeness theorem
Theorem (Birkhoff completeness theorem).
E = T hEq(V) for some class V iff E is deductively
closed.
The duals of the closure conditions yield two modal
operators in the coalgebraic setting.

• Taking the least congruence generated by E
corresponds to taking the largest subcoalgebra of ϕ.
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Theorem (Birkhoff completeness theorem).
E = T hEq(V) for some class V iff E is deductively
closed.
The duals of the closure conditions yield two modal
operators in the coalgebraic setting.

• Taking the least congruence generated by E
corresponds to taking the largest subcoalgebra of ϕ.

• Closing E under substitutions corresponds to taking
the largest invariant coequation contained in ϕ.
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Dualizing the completeness theorem
The duals of the closure conditions yield two modal
operators in the coalgebraic setting.

• Taking the least congruence generated by E
corresponds to taking the largest subcoalgebra of ϕ.

• Closing E under substitutions corresponds to taking
the largest invariant coequation contained in ϕ.

Theorem (Invariance theorem). ϕ is a generating
coequation just in case ϕ is an invariant subcoalgebra
of HC.
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Theories/Generating coequations
A set of equations E is the equational theory for some
class V of algebras iff

• V |= E;

• If V |= E ′, then E ′ ⊆ E.
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Theories/Generating coequations
A set of equations E is the equational theory for some
class V of algebras iff

• V |= E;

• If V |= E ′, then E ′ ⊆ E.

A coequation ϕ is the generating coequation for some class
V of coalgebras iff

• V |= ϕ;

• If V |= ψ, then ϕ ` ψ.
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Theories/Generating coequations
A coequation ϕ is the generating coequation for some class
V of coalgebras iff

• V |= ϕ;

• If V |= ψ, then ϕ ` ψ.

A generating coequation gives a measure of the “coequa-

tional commitment” of V.
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Invariant coequations
Let ϕ ⊆ UHC. We say that ϕ is invariant just in case, for
every “repainting”

p :UHC //C,

equivalently, every homomorphism p̃ :HC //HC , we have

∃p̃ϕ ≤ ϕ.
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Invariant coequations
Let ϕ ⊆ UHC. We say that ϕ is invariant just in case, for
every “repainting”

p :UHC //C,

equivalently, every homomorphism p̃ :HC //HC , we have

∃c∈UHC(p̃(c) = x ∧ ϕ(c)) ` ϕ(x).
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Invariant coequations
Let ϕ ⊆ UHC. We say that ϕ is invariant just in case, for
every “repainting”

p :UHC //C,

equivalently, every homomorphism p̃ :HC //HC , we have

∃c∈UHC(p̃(c) = x ∧ ϕ(c)) ` ϕ(x).

In other words, however we repaint HC, the elements of ϕ

are again (under this new coloring) elements of ϕ.
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Example (cont.)

The coequation ϕ.
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Example (cont.)

The cofree coalgebraThe repainted coalgebra

ϕ is not invariant.
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Example (cont.)

The coequation ϕ.
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The modal operator

Let :Sub(UHC) // Sub(UHC) be the comonad taking a
coequation ϕ to the largest subcoalgebra 〈A, α〉 of HC
such that A ≤ ϕ.
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The modal operator

Let :Sub(UHC) // Sub(UHC) be the comonad taking a
coequation ϕ to the largest subcoalgebra 〈A, α〉 of HC
such that A ≤ ϕ.
As is well-known, if Γ preserves pullbacks of subobjects,
then is an S4 operator.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;
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The modal operator

Let :Sub(UHC) // Sub(UHC) be the comonad taking a
coequation ϕ to the largest subcoalgebra 〈A, α〉 of HC
such that A ≤ ϕ.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;

(i) follows from functoriality.
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The modal operator

Let :Sub(UHC) // Sub(UHC) be the comonad taking a
coequation ϕ to the largest subcoalgebra 〈A, α〉 of HC
such that A ≤ ϕ.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;

(ii) and (iii) are the counit and comultiplication of the
comonad.
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The modal operator

Let :Sub(UHC) // Sub(UHC) be the comonad taking a
coequation ϕ to the largest subcoalgebra 〈A, α〉 of HC
such that A ≤ ϕ.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;

(iv) follows from the fact that U :EΓ
//E preserves finite

meets.

Modal Operators for Coequations – p.13/17



Definition of
Let ϕ ⊆ UHC. Define

Iϕ = {ψ ≤ UHC | ∀p :HC //HC (∃pψ ≤ ϕ)}.

We define a functor :Sub(UHC) // Sub(UHC) by

ϕ =
∨

Iϕ.

Then ϕ is the greatest invariant subobject of UHC con-

tained in ϕ.
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is S4

One can show that is an S4 operator.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;
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is S4

One can show that is an S4 operator.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;

(i) - (iii) follow from the fact that is a comonad, as before.
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is S4

One can show that is an S4 operator.

(i) If ϕ ` ψ then ϕ ` ψ;

(ii) ϕ ` ϕ;

(iii) ϕ ` ϕ;

(iv) (ϕ→ ψ) ` ϕ→ ψ;

(iv) requires an argument that the meet of two invariant co-

equations is again invariant. This is not difficult.
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The invariance theorem, revisited
Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.
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The invariance theorem, revisited
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Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.
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The invariance theorem, revisited
Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. Let [−] :SubE(UHC) // SubEΓ
(HC) be the

right adjoint to U :SubEΓ
(HC) // SubE(HC) (so

= U ◦ [−]). Then [ ϕ] |= ϕ.
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The invariance theorem, revisited
Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. [ ϕ] |= ϕ.
Theorem. ϕ is a generating coequation iff ϕ = ϕ.
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The invariance theorem, revisited
Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. [ ϕ] |= ϕ.
Theorem. ϕ is a generating coequation iff ϕ = ϕ.
Theorem. ϕ ≤ ϕ, i.e., if ϕ is invariant, then
so is ϕ.
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The invariance theorem, revisited
Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. 〈A, α〉 |= ϕ iff 〈A, α〉 |= ϕ.

Lemma. [ ϕ] |= ϕ.
Theorem. ϕ is a generating coequation iff ϕ = ϕ.
Theorem. ϕ ≤ ϕ, i.e., if ϕ is invariant, then
so is ϕ.
Theorem. If Γ preserves non-empty intersections,
then ϕ = ϕ.
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Some open questions
• Is the preservation of non-empty intersections really

relevant to the conclusion that = ?
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relevant to the conclusion that = ?

• What is the relation between the construction of a
coequation ϕ and the corresponding covariety?
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Some open questions
• Is the preservation of non-empty intersections really

relevant to the conclusion that = ?

• What is the relation between the construction of a
coequation ϕ and the corresponding covariety?

V �

ϕ = Vϕ

V �

ϕ = Vϕ

Vϕ∧ψ = Vϕ ∩ Vψ

V∃pϕ = ?

V¬ϕ = ?
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Some open questions
• Is the preservation of non-empty intersections really

relevant to the conclusion that = ?

• What is the relation between the construction of a
coequation ϕ and the corresponding covariety?

• What applications do these “non-behavioral”
covarieties have in computer programming semantics?
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