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The Birkhoff variety theorem

Let P:Set—Set be a polynomial functor, and X an

Infinite set of variables.
Theorem (Birkhoff’s variety theorem (1935)). A

ull subcategory V' of Set® is closed under
f gory

products,
subalgebras and
quotients (codomains of reqular epis)

Jqust in case V 1is definable by a set of equations E over
X, 1.e.,

V={(A, a) | (A, a) F E}.
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The covariety theorem

Let I':£—& be a functor bounded by C' € €£.
Theorem. A full subcategory V of Er s closed under

coproducts,
images (codomains of epis) and
(reqular) subcoalgebras

qust tn case V is definable by a coequation o over C,
1.€.,

V=14, a) | {4, a) = ¢}.
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Coequations

A coequation over C'Is a subobject of U HC', the cofree
coalgebra over C.
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Coequations

A coequation over C'Is a subobject of U HC, the cofree
coalgebra over C'.

A coalgebra (A, «) satisfies ¢ just in case, for every
homomorphism

p: (A, a)—HC,

the image of p is contained in ¢ (i.e., Im(p) < ).

U(A, a) —UHC

N

¥

Modal Operators for Coequations — p.5/17



Example

N

<

@ &

<

Y

The cofree coalgebra H2



A coequation.
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Under any coloring, the elements of the coalgebra map to
elements of .
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Coequations as predicates

Since a coequation ¢ over C'Is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
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Coequations as predicates

Since a coequation ¢ over C'Is just a subobject of UHC, a
coeguation can be viewed as a predicate over UHC.
Hence, the coequations over C' come with a natural
structure. We can build new coequations out of old via A,
-, V, etc.
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(A, a) satisfies o just in case, for every p: (A, a)—~HC,

Im(p) < .
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Coequations as predicates

Since a coequation ¢ over C'Is just a subobject of UHC, a
coequation can be viewed as a predicate over UHC.
Coequation satisfaction can be stated in terms of predicate
satisfaction.

(

(A, a) satisfies o just in case, for every p: (A, a)—~HC,

Jaca(p(a) = x) F p(z).
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Birkhoff’s deduction theorem

A set of equations £ Is deductively closed just In case £
satisfies the following:

() =z € FE;
() t1 =ty e E=1ty, =1t € F,
(i) t1y =ty € Fandty =t3 € E =1t =t3 € |
(iv) E 1s closed under the P-operations;
(V) t1 =ty € E=t|t/x] =ts|t/x] € E.
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Birkhoff’s deduction theorem

A set of equations £ Is deductively closed just In case £
satisfies the following:

() z =2 € F,
() t1 =t € E=ty =1t € F,
() ty=t,e Fandty =t;3 € E =1t =1t3 €
(Iv) E'Is closed under the P-operations;
(V) t1 =ty € E=t|t/x] =ts|t/x] € E.

ltems (1)—(iv) ensure that £ Is a congruence and hence
uniquely determines a quotient of F'.X.
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Birkhoff’s deduction theorem

A set of equations £ Is deductively closed just In case £
satisfies the following:

() =z € FE;
() t1 =ty e E=1ty, =1t € F,
(i) t1y =ty € Fandty =t3 € E =1t =t3 € |
(iv) E 1s closed under the P-operations;
(V) t1 =ty € E = ti|t/x] =ts|t/x] € E.

Item (Vv) ensures that £ Is a stable P-algebra, 1.e., closed
under substitutions.
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Birkhoff’s deduction theorem

A set of equations £ Is deductively closed just In case £
satisfies the following:

() =z € FE;
() t1 =ty e E=1ty, =1t € F,
(i) t1y =ty € Fandty =t3 € E =1t =t3 € |
(iv) E 1s closed under the P-operations;
(V) t1 =ty € E=t|t/x] =ts|t/x] € E.

Theorem (Birkhoff completeness theorem).
E = Thgq(V) for some class V iff E is deductively

closed.
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Dualizing the completeness theorem

Theorem (Birkhoff completeness theorem).
E = Thgq(V) for some class V iff E is deductively

closed.

The duals of the closure conditions yield two modal opera-
tors In the coalgebraic setting.
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Dualizing the completeness theorem

The duals of the closure conditions yield two modal
operators in the coalgebraic setting.

Taking the least congruence generated by £
corresponds to taking the largest subcoalgebra of .

Closing £ under substitutions corresponds to taking
the largest invariant coequation contained in .

Theorem (Invariance theorem). ¢ is a generating
coequation just in case @ s an invariant subcoalgebra

of HC'.
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Theories/Generating coequations

A set of equations £ Is the equational theory for some
class V of algebras iff

V = F;

IfV

— F',then £/ C F.
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Theories/Generating coequations
A set of equations £ Is the equational theory for some
class V of algebras iff

V = E;

IfV = E',then £ C F.

A coequation ¢ IS the generating coequation for some class
V of coalgebras iff

V =g
If V =, then ¢ - .
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Theories/Generating coequations

A coequation ¢ IS the generating coequation for some class
V of coalgebras iff
V = o

If V =, then ¢ - .

A generating coequation gives a measure of the “coequa-
tional commitment” of V.
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Invariant coequations

Let o C UHC'. We say that o Is invariant just in case, for
every “repainting”

p:UHC——C,
equivalently, every homomorphism p: HC'—HC', we have

J50 < .
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Invariant coequations

Let o C UHC'. We say that o Is invariant just in case, for
every “repainting”

p:UHC——C,

equivalently, every homomorphism p: HC'—HC', we have

Jecvrc(P(c) =z A p(c)) - ().
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Invariant coequations

Let o C UHC'. We say that o Is invariant just in case, for
every “repainting”

p:UHC——C,

equivalently, every homomorphism p: HC'—HC', we have

Jecvrc(P(c) =z A p(c)) - ().

In other words, however we repaint HC, the elements of ¢
are again (under this new coloring) elements of .
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Example (cont.)
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Example (cont.)
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The repainted coalgebra
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The cofree coalgebra

@ 1S not invariant.
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Example (cont.)




The modal operator

Let [1:Sub(UHC')— Sub(UHC') be the comonad taking a

coequation ¢ to the largest subcoalgebra (A, o) of HC
such that A < .
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The modal operator

Let (J:Sub(UHC)— Sub(UHC') be the comonad taking a
coequation ¢ to the largest subcoalgebra (A, o) of HC

such that A < .
As Is well-known, If I" preserves pullbacks of subobjects,

then [ 1s an S4 operator.
(1) If o =1 then Uy = Lly;

(1) O =
() Oy F O0g;
(v) U(p — ) = e — Dy,
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The modal operator

Let [1:Sub(UHC')— Sub(UHC') be the comonad taking a

coequation ¢ to the largest subcoalgebra (A, o) of HC
such that A < .

(1) If o 1 then Uy = Ly,

(1) e k¢
() Dy F O0g;
(iv) O(p — 9) = e — Dy

(1) follows from functoriality.
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The modal operator

Let [1:Sub(UHC')— Sub(UHC') be the comonad taking a

coequation ¢ to the largest subcoalgebra (A, o) of HC
such that A < .

(1) If o =1 then Uy = Lly;

() Qe ¢;
() Do = Dy
(iv) O(p — 9) = e — Dy

(11) and (i11) are the counit and comultiplication of the
comonad.

Modal Operators for Coequations — p.13/17



The modal operator

Let [1:Sub(UHC')— Sub(UHC') be the comonad taking a

coequation ¢ to the largest subcoalgebra (A, o) of HC
such that A < .

(1) If o =1 then Uy = Lly;

(1) O k=
() Dy F O0g;
(v) O(p — ) FDp — O

(iv) follows from the fact that U : E+—& preserves finite
meets.

Modal Operators for Coequations — p.13/17



Definition of X
Let o C UHC'. Define
Z,={¢ <UHC |Vp:HC—HC (3% < p)}.

We define a functor X :Sub(U HC')— Sub(UHC') by

@z\/Iw.

Then X Is the greatest invariant subobject of U HC' con-
tained In .
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X 1S S4

One can show that
(i) If ¢ 4 then
(i) e - ¢;

(i) X F ok

(iv) M(p — )

© =

SO%

Y,

IS an S4 operator.
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X 1S S4

One can show that X Is an S4 operator.

(1) If o 1 then Xy = X,
() Mo
(1) XN - o3
(V) M(p — ) - My — Ky,
(1) - (1) follow from the fact that

IS a comonad, as before.
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X 1S S4

One can show that X Is an S4 operator.
(1) If o = then Xy - X,

() X ;

(1) Mo - 2

(V) K(p — ) F My — Ky

1V) requires an argument that the meet of two invariant co-

equations Is again invariant. This Is not difficult.

N
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The Invariance theorem, revisited
Lemma. (A, o) = ¢ iff (A, a) = Q.




The Invariance theorem, revisited

Lemma. (A, o) = ¢ iff (A, a)
Lemma. (A, o) = ¢ iff (A, a)
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The Invariance theorem, revisited

Lemma. (A, «a)
Lemma. (A, «a)

= o iff (A, a)

= ¢ iff (A, @)

— .

Lemma. Let |—|:Subg(UHC)— Subg.(HC') be the
right adjoint to U :Subg.(HC')— Subg(HC') (so

=Uo|—]). Then [Xy| E p.
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The Invariance theorem, revisited

Lemma. (A, ) F ¢ iff (A, o) = Oep.
Lemma. (A, ) F ¢ iff (A, a) = Xop.

Lemma. |

]

Theorem. ¢ 1s a generating coequation iff ¢ =




The Invariance theorem, revisited

Lemma. (A, ) F ¢ iff (A, o) = Oep.
Lemma. (A, ) F ¢ iff (A, a) = Xop.
Lemma. [Xop| = .

Theorem. ¢ is a generating coequation iff p = Q.

Theorem. o < ©, 1.e., if © 18 invariant, then
so 18 L.
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The Invariance theorem, revisited

Lemma. (A, «a)
Lemma. (A, «a)

= ¢ iff (4, @)
= ¢ iff (4, a)

Lemma. [Xop| = .
Theorem. ¢ is a generating coequation iff p = Q.
o < ©, 1.e., if © 18 invariant, then

Theorem.
so 18 L.

L.
L.

Theorem. [fI' preserves non-empty intersections,

then O =

o
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Some open questions

Is the preservation of non-empty intersections really
relevant to the conclusion that — ?
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Some open questions

Is the preservation of non-empty intersections really
relevant to the conclusion that — ?

What 1s the relation between the construction of a
coeguation ¢ and the corresponding covariety?

Vo, =V,

Vry =V,
Vory = Ve N Vy
Vi3,="7

V., =7
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Some open questions

Is the preservation of non-empty intersections really
relevant to the conclusion that — ?

What 1s the relation between the construction of a
coeguation ¢ and the corresponding covariety?

What applications do these “non-behavioral”
covarieties have in computer programming semantics?
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