Modal Operators for Coequations

Jesse Hughes

jesse@cmu.edu

Carnegie Mellon University

Modal Operators for Coequations – p.1/17

I. The co-Birkhoff Theorem

- I. The co-Birkhoff Theorem
- II. Deductive completeness

- I. The co-Birkhoff Theorem
- II. Deductive completeness
- III. The \Box operator

- I. The co-Birkhoff Theorem
- II. Deductive completeness
- III. The \Box operator
- IV. The \boxtimes operator

- I. The co-Birkhoff Theorem
- II. Deductive completeness
- III. The \Box operator
- IV. The \boxtimes operator
 - V. The invariance theorem

The Birkhoff variety theorem

Let \mathbb{P} : Set \rightarrow Set be a polynomial functor, and X an infinite set of variables.

Theorem (Birkhoff's variety theorem (1935)). A full subcategory V of $\mathbf{Set}^{\mathbb{P}}$ is closed under

- products,
- subalgebras and
- quotients (codomains of regular epis)

just in case V is definable by a set of equations E over X, i.e.,

$$\mathbf{V} = \{ \langle A, \, \alpha \rangle \mid \langle A, \, \alpha \rangle \models E \}.$$

The covariety theorem

Let $\Gamma: \mathcal{E} \to \mathcal{E}$ be a functor bounded by $C \in \mathcal{E}$. **Theorem.** A full subcategory \mathbf{V} of \mathcal{E}_{Γ} is closed under

- coproducts,
- images (codomains of epis) and
- (regular) subcoalgebras

just in case V is definable by a coequation φ over C, *i.e.*,

$$\mathbf{V} = \{ \langle A, \alpha \rangle \mid \langle A, \alpha \rangle \models \varphi \}.$$

Coequations

A coequation over C is a subobject of UHC, the cofree coalgebra over C.

Coequations

A coequation over C is a subobject of UHC, the cofree coalgebra over C. A coalgebra $\langle A, \alpha \rangle$ satisfies φ just in case, for every homomorphism

$$p:\langle A, \alpha \rangle \longrightarrow HC,$$

the image of p is contained in φ (i.e., $Im(p) \leq \varphi$).

$$U\langle A, \alpha \rangle \longrightarrow UHC$$

The cofree coalgebra H2

Modal Operators for Coequations – p.6/17

This coalgebra satisfies φ .

Modal Operators for Coequations – p.6/17

Under any coloring, the elements of the coalgebra map to elements of φ .

This coalgebra doesn't satisfy φ .

Modal Operators for Coequations – p.6/17

If we paint the circle red, it isn't mapped to an element of φ .

Modal Operators for Coequations – p.6/17

Since a coequation φ over C is just a subobject of UHC, a coequation can be viewed as a predicate over UHC.

Since a coequation φ over *C* is just a subobject of *UHC*, a coequation can be viewed as a predicate over *UHC*. Hence, the coequations over *C* come with a natural structure. We can build new coequations out of old via \wedge , \neg , \forall , etc.

Since a coequation φ over C is just a subobject of UHC, a coequation can be viewed as a predicate over UHC. Coequation satisfaction can be stated in terms of predicate satisfaction.

Since a coequation φ over C is just a subobject of UHC, a coequation can be viewed as a predicate over UHC. Coequation satisfaction can be stated in terms of predicate satisfaction.

 $\langle A, \alpha \rangle$ satisfies φ just in case, for every $p: \langle A, \alpha \rangle \rightarrow HC$, $\mathsf{Im}(p) \leq \varphi$.

Since a coequation φ over C is just a subobject of UHC, a coequation can be viewed as a predicate over UHC. Coequation satisfaction can be stated in terms of predicate satisfaction.

$$\langle A, \alpha \rangle$$
 satisfies φ just in case, for every $p: \langle A, \alpha \rangle \rightarrow HC$,
 $\exists_{a \in A}(p(a) = x) \vdash \varphi(x).$

A set of equations E is deductively closed just in case E satisfies the following:

(i) $x = x \in E;$

(ii) $t_1 = t_2 \in E \Rightarrow t_2 = t_1 \in E$;

(iii) $t_1 = t_2 \in E$ and $t_2 = t_3 \in E \Rightarrow t_1 = t_3 \in E$;

(iv) E is closed under the \mathbb{P} -operations;

(v) $t_1 = t_2 \in E \Rightarrow t_1[t/x] = t_2[t/x] \in E$.

A set of equations E is deductively closed just in case E satisfies the following:

(i) $x = x \in E;$

(ii) $t_1 = t_2 \in E \Rightarrow t_2 = t_1 \in E$;

(iii) $t_1 = t_2 \in E$ and $t_2 = t_3 \in E \Rightarrow t_1 = t_3 \in E$;

(iv) E is closed under the \mathbb{P} -operations;

(v) $t_1 = t_2 \in E \Rightarrow t_1[t/x] = t_2[t/x] \in E$.

Items (i)–(iv) ensure that E is a congruence and hence uniquely determines a quotient of FX.

A set of equations E is deductively closed just in case E satisfies the following:

(i) $x = x \in E;$

(ii) $t_1 = t_2 \in E \Rightarrow t_2 = t_1 \in E$;

(iii) $t_1 = t_2 \in E$ and $t_2 = t_3 \in E \Rightarrow t_1 = t_3 \in E$;

(iv) E is closed under the \mathbb{P} -operations;

(v) $t_1 = t_2 \in E \Rightarrow t_1[t/x] = t_2[t/x] \in E$.

Item (v) ensures that E is a stable \mathbb{P} -algebra, i.e., closed under substitutions.

A set of equations E is deductively closed just in case E satisfies the following:

(i) $x = x \in E$;

(ii) $t_1 = t_2 \in E \Rightarrow t_2 = t_1 \in E$;

(iii) $t_1 = t_2 \in E$ and $t_2 = t_3 \in E \Rightarrow t_1 = t_3 \in E$;

(iv) E is closed under the \mathbb{P} -operations;

(v) $t_1 = t_2 \in E \Rightarrow t_1[t/x] = t_2[t/x] \in E$.

Theorem (Birkhoff completeness theorem). $E = Th_{Eq}(\mathbf{V})$ for some class \mathbf{V} iff E is deductively closed.

Theorem (Birkhoff completeness theorem). $E = \mathcal{T}h_{\mathsf{Eq}}(\mathbf{V})$ for some class \mathbf{V} iff E is deductively closed.

The duals of the closure conditions yield two modal operators in the coalgebraic setting.

Theorem (Birkhoff completeness theorem). $E = Th_{Eq}(\mathbf{V})$ for some class \mathbf{V} iff E is deductively closed.

The duals of the closure conditions yield two modal operators in the coalgebraic setting.

• Taking the least congruence generated by E corresponds to taking the largest subcoalgebra of φ .

Theorem (Birkhoff completeness theorem). $E = Th_{Eq}(\mathbf{V})$ for some class \mathbf{V} iff E is deductively closed.

The duals of the closure conditions yield two modal operators in the coalgebraic setting.

- Taking the least congruence generated by E corresponds to taking the largest subcoalgebra of φ .
- Closing E under substitutions corresponds to taking the largest invariant coequation contained in φ .

The duals of the closure conditions yield two modal operators in the coalgebraic setting.

- Taking the least congruence generated by E corresponds to taking the largest subcoalgebra of φ .
- Closing E under substitutions corresponds to taking the largest invariant coequation contained in φ .

Theorem (Invariance theorem). φ is a generating coequation just in case φ is an invariant subcoalgebra of HC.

Theories/Generating coequations

A set of equations E is the equational theory for some class V of algebras iff

•
$$\mathbf{V} \models E;$$

• If $\mathbf{V} \models E'$, then $E' \subseteq E$.

Theories/Generating coequations

A set of equations E is the equational theory for some class V of algebras iff

- $\mathbf{V} \models E;$
- If $\mathbf{V} \models E'$, then $E' \subseteq E$.

A coequation φ is the generating coequation for some class V of coalgebras iff

- $\mathbf{V} \models \varphi$;
- If $\mathbf{V} \models \psi$, then $\varphi \vdash \psi$.

Theories/Generating coequations

A coequation φ is the generating coequation for some class V of coalgebras iff

- $\mathbf{V} \models \varphi$;
- If $\mathbf{V} \models \psi$, then $\varphi \vdash \psi$.

A generating coequation gives a measure of the "coequational commitment" of V.

Invariant coequations

Let $\varphi \subseteq UHC$. We say that φ is invariant just in case, for every "repainting"

$$p: UHC \longrightarrow C$$
,

equivalently, every homomorphism $\widetilde{p}: HC \rightarrow HC$, we have

 $\exists_{\widetilde{p}}\varphi \leq \varphi.$

Invariant coequations

Let $\varphi \subseteq UHC$. We say that φ is invariant just in case, for every "repainting"

$$p: UHC \longrightarrow C$$
,

equivalently, every homomorphism $\widetilde{p}: HC \rightarrow HC$, we have

$$\exists_{c \in UHC} (\widetilde{p}(c) = x \land \varphi(c)) \vdash \varphi(x).$$

Invariant coequations

Let $\varphi \subseteq UHC$. We say that φ is invariant just in case, for every "repainting"

$$p: UHC \longrightarrow C$$
,

equivalently, every homomorphism $\widetilde{p}: HC \rightarrow HC$, we have

$$\exists_{c \in UHC} (\widetilde{p}(c) = x \land \varphi(c)) \vdash \varphi(x).$$

In other words, however we repaint HC, the elements of φ are again (under this new coloring) elements of φ .

Example (cont.)

The coequation φ .

Modal Operators for Coequations – p.12/17

Example (cont.)

The repainted coalgebra The cofree coalgebra φ is not invariant.

Modal Operators for Coequations – p.12/17

Example (cont.)

The coequation $\boxtimes \varphi$.

Modal Operators for Coequations – p.12/17

Let \Box : Sub $(UHC) \rightarrow$ Sub(UHC) be the comonad taking a coequation φ to the largest subcoalgebra $\langle A, \alpha \rangle$ of HC such that $A \leq \varphi$.

Let \Box : Sub $(UHC) \rightarrow$ Sub(UHC) be the comonad taking a coequation φ to the largest subcoalgebra $\langle A, \alpha \rangle$ of HC such that $A \leq \varphi$.

As is well-known, if Γ preserves pullbacks of subobjects, then \Box is an S4 operator.

(i) If $\varphi \vdash \psi$ then $\Box \varphi \vdash \Box \psi$; (ii) $\Box \varphi \vdash \varphi$; (iii) $\Box \varphi \vdash \Box \Box \varphi$; (iv) $\Box (\varphi \vdash \Box \Box \varphi) \vdash \Box \varphi$;

(iv) $\Box(\varphi \to \psi) \vdash \Box \varphi \to \Box \psi$;

Let \Box : Sub $(UHC) \rightarrow$ Sub(UHC) be the comonad taking a coequation φ to the largest subcoalgebra $\langle A, \alpha \rangle$ of HC such that $A \leq \varphi$.

- (i) If $\varphi \vdash \psi$ then $\Box \varphi \vdash \Box \psi$; (ii) $\Box \varphi \vdash \varphi$; (iii) $\Box \varphi \vdash \Box \Box \varphi$; (iv) $\Box (\varphi \rightarrow \psi) \vdash \Box \varphi \rightarrow \Box \psi$;
- (i) follows from functoriality.

Let \Box : Sub $(UHC) \rightarrow$ Sub(UHC) be the comonad taking a coequation φ to the largest subcoalgebra $\langle A, \alpha \rangle$ of HC such that $A \leq \varphi$.

(i) If $\varphi \vdash \psi$ then $\Box \varphi \vdash \Box \psi$; (ii) $\Box \varphi \vdash \varphi$; (iii) $\Box \varphi \vdash \Box \Box \varphi$; (iv) $\Box (\varphi \rightarrow \psi) \vdash \Box \varphi \rightarrow \Box \psi$;

(ii) and (iii) are the counit and comultiplication of the comonad.

Let \Box : Sub $(UHC) \rightarrow$ Sub(UHC) be the comonad taking a coequation φ to the largest subcoalgebra $\langle A, \alpha \rangle$ of HC such that $A \leq \varphi$.

- (i) If $\varphi \vdash \psi$ then $\Box \varphi \vdash \Box \psi$;
- (ii) $\Box \varphi \vdash \varphi$;
- (iii) $\Box \varphi \vdash \Box \Box \varphi$;
- (iv) $\Box(\varphi \to \psi) \vdash \Box \varphi \to \Box \psi$;

(iv) follows from the fact that $U: \mathcal{E}_{\Gamma} \rightarrow \mathcal{E}$ preserves finite meets.

Definition of \boxtimes

Let $\varphi \subseteq UHC$. Define

 $\mathcal{I}_{\varphi} = \{ \psi \leq UHC \mid \forall p : HC \longrightarrow HC (\exists_p \psi \leq \varphi) \}.$

We define a functor $\boxtimes : \operatorname{Sub}(UHC) \rightarrow \operatorname{Sub}(UHC)$ by

$$\boxtimes \varphi = \bigvee \mathcal{I}_{\varphi}.$$

Then $\boxtimes \varphi$ is the greatest invariant subobject of *UHC* contained in φ .

One can show that \boxtimes is an S4 operator. (i) If $\varphi \vdash \psi$ then $\boxtimes \varphi \vdash \boxtimes \psi$; (ii) $\boxtimes \varphi \vdash \varphi$; (iii) $\boxtimes \varphi \vdash \boxtimes \boxtimes \varphi$; (iv) $\boxtimes (\varphi \rightarrow \psi) \vdash \boxtimes \varphi \rightarrow \boxtimes \psi$;

One can show that \boxtimes is an S4 operator. (i) If $\varphi \vdash \psi$ then $\boxtimes \varphi \vdash \boxtimes \psi$; (ii) $\boxtimes \varphi \vdash \varphi$; (iii) $\boxtimes \varphi \vdash \boxtimes \boxtimes \varphi$;

(iv) $\boxtimes (\varphi \to \psi) \vdash \boxtimes \varphi \to \boxtimes \psi;$

(i) - (iii) follow from the fact that \boxtimes is a comonad, as before.

\boxtimes is S4

One can show that \boxtimes is an S4 operator. (i) If $\varphi \vdash \psi$ then $\boxtimes \varphi \vdash \boxtimes \psi$; (ii) $\boxtimes \varphi \vdash \varphi$; (iii) $\boxtimes \varphi \vdash \boxtimes \boxtimes \varphi$; (iv) $\boxtimes (\varphi \rightarrow \psi) \vdash \boxtimes \varphi \rightarrow \boxtimes \psi$;

(iv) requires an argument that the meet of two invariant coequations is again invariant. This is not difficult.

Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \Box \varphi.$

Lemma. $\langle A, \alpha \rangle \models \varphi$ iff $\langle A, \alpha \rangle \models \Box \varphi$. **Lemma.** $\langle A, \alpha \rangle \models \varphi$ iff $\langle A, \alpha \rangle \models \boxtimes \varphi$.

Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \Box \varphi.$ Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \boxtimes \varphi.$ Lemma. Let $[-]: \operatorname{Sub}_{\mathcal{E}}(UHC) \rightarrow \operatorname{Sub}_{\mathcal{E}_{\Gamma}}(HC)$ be the right adjoint to $U: \operatorname{Sub}_{\mathcal{E}_{\Gamma}}(HC) \rightarrow \operatorname{Sub}_{\mathcal{E}}(HC)$ (so $\Box = U \circ [-]$). Then $[\boxtimes \varphi] \models \varphi.$

Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \Box \varphi$. Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \boxtimes \varphi$. Lemma. $[\boxtimes \varphi] \models \varphi$.

Theorem. φ is a generating coequation iff $\varphi = \Box \boxtimes \varphi$.

Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \Box \varphi$. Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \boxtimes \varphi$. Lemma. $[\boxtimes \varphi] \models \varphi$. Theorem. φ is a generating coequation iff $\varphi = \Box \boxtimes \varphi$. Theorem. $\Box \boxtimes \varphi \leq \boxtimes \Box \varphi$, i.e., if φ is invariant, then so is $\Box \varphi$.

Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \Box \varphi.$ Lemma. $\langle A, \alpha \rangle \models \varphi \text{ iff } \langle A, \alpha \rangle \models \boxtimes \varphi.$ Lemma. $[\boxtimes \varphi] \models \varphi.$

Theorem. φ is a generating coequation iff $\varphi = \Box \boxtimes \varphi$. **Theorem.** $\Box \boxtimes \varphi \leq \boxtimes \Box \varphi$, *i.e.*, if φ is invariant, then so is $\Box \varphi$.

Theorem. If Γ preserves non-empty intersections, then $\Box \boxtimes \varphi = \boxtimes \Box \varphi$.

• Is the preservation of non-empty intersections really relevant to the conclusion that $\Box \boxtimes = \boxtimes \Box$?

- Is the preservation of non-empty intersections really relevant to the conclusion that $\Box \boxtimes = \boxtimes \Box$?
- What is the relation between the construction of a coequation φ and the corresponding covariety?

- Is the preservation of non-empty intersections really relevant to the conclusion that $\Box \boxtimes = \boxtimes \Box$?
- What is the relation between the construction of a coequation φ and the corresponding covariety?

$$egin{aligned} \mathbf{V}_{\Boxarphi} &= \mathbf{V}_{arphi} \ \mathbf{V}_{\boxtimesarphi} &= \mathbf{V}_{arphi} \ \mathbf{V}_{arphi \wedge \psi} &= \mathbf{V}_{arphi} \cap \mathbf{V}_{\psi} \ \mathbf{V}_{\exists_p arphi} &= ? \ \mathbf{V}_{\neg arphi} &= ? \end{aligned}$$

- Is the preservation of non-empty intersections really relevant to the conclusion that $\Box \boxtimes = \boxtimes \Box$?
- What is the relation between the construction of a coequation φ and the corresponding covariety?
- What applications do these "non-behavioral" covarieties have in computer programming semantics?