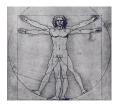
Means-End Relations and Artifactual Functions A Sketch


Jesse Hughes

Technical University of Eindhoven

June 4, 2005

▲圖→ ▲ 国→ ▲ 国→

Introduction to Norms in Knowledge

Epistemology:

• Knowledge of descriptive claims

A (1) > (1) > (1)

4

Introduction to Norms in Knowledge

- Knowledge of descriptive claims
- Knowledge of normative claims

Introduction to Norms in Knowledge

- Knowledge of descriptive claims
- Knowledge of normative claims
 - Non-moral

Introduction to Norms in Knowledge

- Knowledge of descriptive claims
- Knowledge of normative claims
 - Non-moral
 - Prescriptive ought to do

Introduction to Norms in Knowledge

- Knowledge of descriptive claims
- Knowledge of normative claims
 - Non-moral
 - Prescriptive ought to do
 - Functional things ought to do

Introduction to Norms in Knowledge

Applied to technical artifacts:

- Knowledge of normative claims
 - Non-moral
 - Prescriptive ought to do
 - Functional things ought to do

Introduction to Norms in Knowledge

Applied to technical artifacts:

- Knowledge of normative claims
 - Non-moral
 - Prescriptive ought to do Artifacts: HOWTOs
 - Functional things ought to do

Introduction to Norms in Knowledge

Applied to technical artifacts:

- Knowledge of normative claims
 - Non-moral
 - Prescriptive ought to do Artifacts: HOWTOs
 - Functional things ought to do Artifacts: artifactual functions

Some examples of functional ascriptions

• "The function of the heart is to pump blood."

Hughes Means-End Relations and Artifactual Functions

- 10

- "The function of the heart is to pump blood."
- "That switch mutes the television."

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

We ascribe functions to biological stuff,

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

We ascribe functions to biological stuff, artifacts,

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

We ascribe functions to biological stuff, artifacts, algorithms,

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

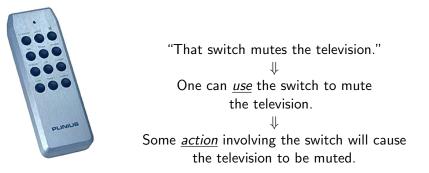
We ascribe functions to biological stuff, artifacts, algorithms, personal roles...

How functions relate to means and ends

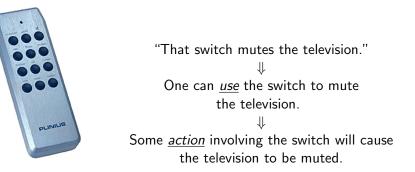
"That switch mutes the television."

- - E - - - E - -

How functions relate to means and ends


"That switch mutes the television." ↓ One can <u>use</u> the switch to mute the television.

How functions relate to means and ends


"That switch mutes the television."
↓
One can <u>use</u> the switch to mute the television.
↓
Some <u>action</u> involving the switch will cause the television to be muted.

How functions relate to means and ends

• Functions imply means-end relations.

How functions relate to means and ends

- Functions imply means-end relations.
- Step one: Provide a semantics for means-end relations.

Outline

Means-end relations

- Propositional Dynamic Logic
- Means-end relations in PDL

< □→ < 三→ < 三→

Outline

Means-end relations

- Propositional Dynamic Logic
- Means-end relations in PDL

2 Artifactual functions

- Functional ascriptions and fulfillment
- Normal contexts

- - E - - - E - -

Outline

Means-end relations

- Propositional Dynamic Logic
- Means-end relations in PDL

2 Artifactual functions

- Functional ascriptions and fulfillment
- Normal contexts

・ 同 ト・ ・ ヨート・ ・ ヨート

æ

Propositional Dynamic Logic is a logic of actions.

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Propositional Dynamic Logic is a logic of actions.

Basic types:a set act of <u>actions</u>,

æ

Propositional Dynamic Logic is a logic of actions.

Basic types:

- a set **act** of <u>actions</u>,
 - Closed under:
 - sequential composition $\alpha; \beta$
 - <u>non-deterministic choice</u> $\alpha \cup \beta$.

Propositional Dynamic Logic is a logic of actions.

Basic types:

- a set act of <u>actions</u>,
 - Closed under:
 - sequential composition $\alpha; \beta$
 - <u>non-deterministic choice</u> $\alpha \cup \beta$.

• a set **prop** of *propositions*.

Propositional Dynamic Logic is a logic of actions.

Basic types:

- a set act of <u>actions</u>,
 - Closed under:
 - sequential composition $\alpha; \beta$
 - <u>non-deterministic choice</u> $\alpha \cup \beta$.
- a set **prop** of *propositions*.
 - Closed under:
 - boolean connectives,
 - dynamic operators $[\alpha]\varphi$, $\langle \alpha \rangle \varphi$.

Propositional Dynamic Logic is a logic of actions.

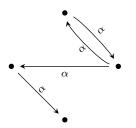
Basic types:

- a set act of <u>actions</u>,
 - Closed under:
 - sequential composition $\alpha; \beta$
 - <u>non-deterministic choice</u> $\alpha \cup \beta$.
- a set **prop** of *propositions*.
 - Closed under:
 - boolean connectives,
 - dynamic operators $[\alpha]\varphi$, $\langle \alpha \rangle \varphi$.

Intuitions:

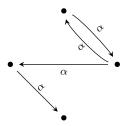
• $[\alpha]\varphi$: after doing α , φ <u>will</u> hold.

Propositional Dynamic Logic is a logic of actions.



Basic types:

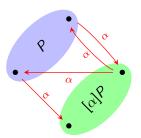
- a set act of <u>actions</u>,
 - Closed under:
 - sequential composition $\alpha; \beta$
 - <u>non-deterministic choice</u> $\alpha \cup \beta$.
- a set **prop** of *propositions*.
 - Closed under:
 - boolean connectives,
 - dynamic operators $[\alpha]\varphi$, $\langle \alpha \rangle \varphi$.


Intuitions:

- $[\alpha]\varphi$: after doing α , φ <u>will</u> hold.
- $\langle \alpha \rangle \varphi$: after doing α , φ <u>might</u> hold.

Possible world semantics with transition systems for each action α .

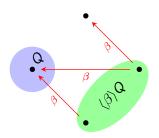
イロト イヨト イヨト イヨト



Possible world semantics with transition systems for each action α .

 $w \xrightarrow{\alpha} w'$ means:

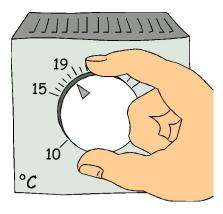
one can reach w' by doing α in w.


-2

Possible world semantics with transition systems for each action α .

 $w \xrightarrow{\alpha} w'$ means: one can reach w' by doing α in w.

 $\mathbf{w} \models [\alpha] \varphi \quad \underline{iff} \quad \forall \mathbf{w} \stackrel{\alpha}{\longrightarrow} \mathbf{w}' \quad \mathbf{w}' \models \varphi.$

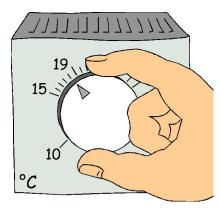


Possible world semantics with transition systems for each action α .

 $w \xrightarrow{\alpha} w'$ means: one can reach w' by doing α in w.

<ロ> (四) (四) (三) (三) (三)

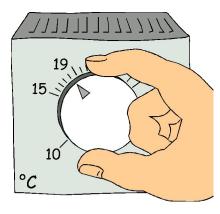
A thermostat example



Thermostat connected to heater.

Hughes Means-End Relations and Artifactual Functions

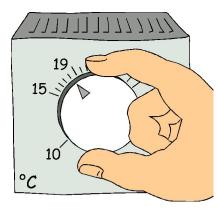
イロト イヨト イヨト イヨト


A thermostat example

Thermostat connected to heater. Three settings: *I*, *m*, *h*

イロト イヨト イヨト イヨト

A thermostat example


Thermostat connected to heater. Three settings: *I*, *m*, *h* Propositions:

• Setting:

$$S = h$$

イロト イヨト イヨト イヨト

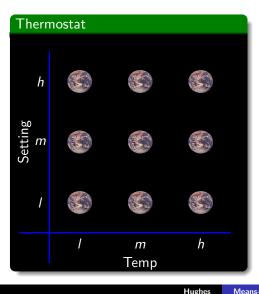
A thermostat example

Thermostat connected to heater. Three settings: *I*, *m*, *h*

Propositions:

• Setting:

•
$$S = h$$


• Temperature:

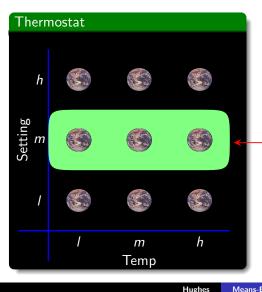
•
$$T \ge l$$

•
$$T \ge m$$

• $T \ge h$

æ

A thermostat example

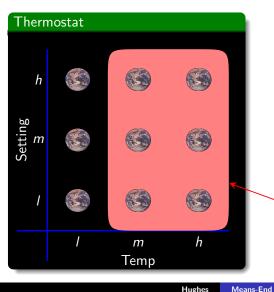


Thermostat connected to heater. Three settings: *I*, *m*, *h* Propositions: • Setting: • *S* = *I* • S = m• *S* = *h* Temperature: • T > I• *T* > *m* • $T \ge h$

(4月) (4日) (4日)

Means-End Relations and Artifactual Functions

A thermostat example

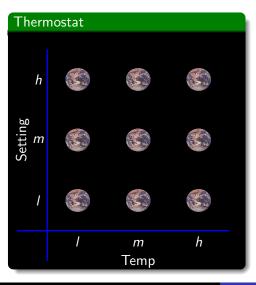


Thermostat connected to heater. Three settings: *I*, *m*, *h* Propositions: • Setting: • S = I• S = m• S = h Temperature: • T > I• *T* > *m* • $T \ge h$

Means-End Relations and Artifactual Functions

(日) (四) (注) (注)

A thermostat example

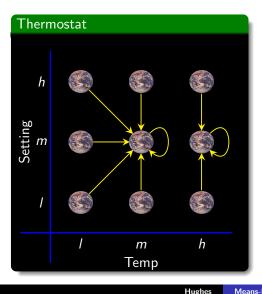


Thermostat connected to heater. Three settings: *I*, *m*, *h* Propositions: • Setting: • *S* = *I* • S = m• *S* = *h* • Temperature: • $T \geq I$ • T > m• $T \ge h$

・ 同下・ ・ ヨト・ ・ ヨト

Means-End Relations and Artifactual Functions

A thermostat example

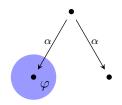


Thermostat connected to heater. Three settings: *I*, *m*, *h* <u>Actions:</u> • Change setting: • set(*I*) • set(*m*) • set(*h*)

< □> < □> < □>

Hughes Means-End Relations and Artifactual Functions

A thermostat example

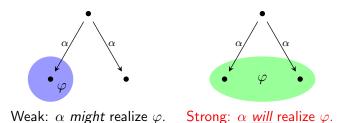

Thermostat connected to heater. Three settings: *I*, *m*, *h* <u>Actions:</u>

- Change setting:
 - **set**(/)
 - **set**(*m*)
 - **set**(*h*)
- **set**(*m*) changes:
 - setting to *m*,
 - temp $\geq m$.

A means is an action α that can realize one's end $\varphi.$

A means is an action α that can realize one's end $\varphi.$

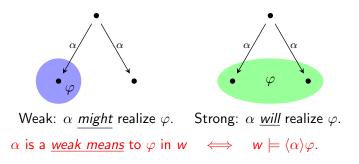
Two interpretations:



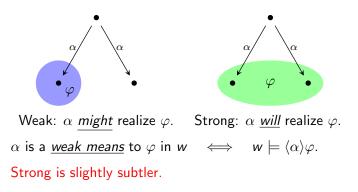
Weak: α might realize φ .

・ 同 ト・ ・ ヨート・ ・ ヨート

A means is an action α that can realize one's end $\varphi.$


Two interpretations:

A (1) < (1) < (1) < (1) </p>


A means is an action α that can realize one's end $\varphi.$

Two interpretations:

A means is an action α that can realize one's end $\varphi.$

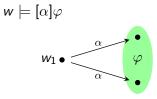
Two interpretations:

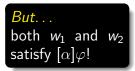
A (1) > (1) > (1)

In w, α is a strongly sufficient means to φ

Doing α in w will yield φ

· □ > · (司 > · (日 > · (日 > ·)

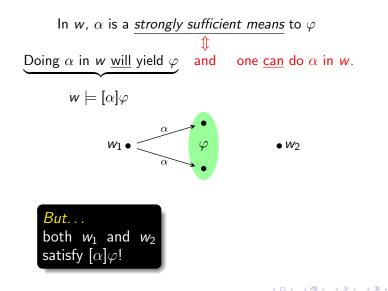

In w, α is a strongly sufficient means to φ

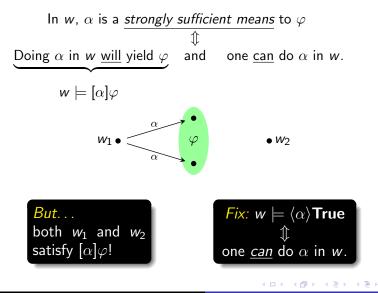

Doing α in w will yield φ

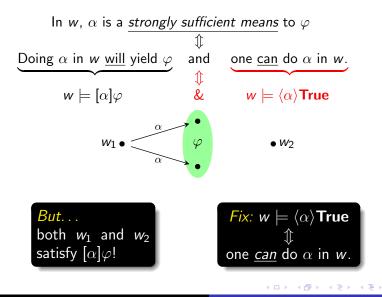
 $\mathbf{w} \models [\alpha] \varphi$

In w, α is a strongly sufficient means to φ

Doing α in w will yield φ






・ 同 ト・ イ ヨ ト・ イ ヨ ト

3

• W2

Means-end relations Propositional Dynamic Logic Means-end relations in PDL

Additional topics on means-end relations (All the thrilling details we won't discuss)

• Necessary means to an end.

(日本) (日本) (日本)

Means-end relations Propositional Dynamic Logic Means-end relations in PDL

Additional topics on means-end relations (All the thrilling details we won't discuss)

- Necessary means to an end.
- Conditional means-end relations.

(周) (三) (三)

-2

Additional topics on means-end relations (All the thrilling details we won't discuss)

- Necessary means to an end.
- Conditional means-end relations.
- Practical consequences of means-end relations.

Additional topics on means-end relations (All the thrilling details we won't discuss)

- Necessary means to an end.
- Conditional means-end relations.
- Practical consequences of means-end relations.
- Efficacy via fuzzy logic.

Outline

Means-end relations

- Propositional Dynamic Logic
- Means-end relations in PDL

2 Artifactual functions

- Functional ascriptions and fulfillment
- Normal contexts

・ 同・ ・ ヨ・ ・ ヨ・

-2

Functional ascriptions and fulfillment Normal contexts

Where do functions come from?

Historic account:

The function of o is f \uparrow the fact that o does fexplains the existence of o.

イロト イヨト イヨト イヨト

Where do functions come from?

Historic account:

The function of o is f \uparrow the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

Functional ascriptions and fulfillment Normal contexts

Where do functions come from?

Historic account:

The function of o is f \uparrow the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

Intentional account:

The function of o is f \bigcirc <u>Someone</u> intends to use oto do f.

Functional ascriptions and fulfillment Normal contexts

Where do functions come from?

Historic account:

The function of o is f \uparrow the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

Intentional account:

The function of o is f \bigcirc <u>Someone</u> intends to use oto do f.

Includes a *social* aspect.

Where do functions come from?

Historic account:

The function of o is f \uparrow the fact that o does fexplains the existence of o.

Biological function same as artifactual function.

Intentional account:

The function of o is f f<u>Someone</u> intends to use oto do f.

Includes a *social* aspect.

Tough question. Let's avoid it.

伺下 イヨト イヨト

Functional ascriptions and fulfillment Normal contexts

The structure of functional ascriptions

- A functional ascription f includes the following components.
 - an artifact type T,

▲□▶ ▲ □▶ ▲ □▶

-2

- A functional ascription f includes the following components.
 - an artifact type T,
 - $\bullet\,$ a list σ of parameter types,

・ 同 ト・ ・ ヨート・ ・ ヨート

æ

- A functional ascription f includes the following components.
 - an artifact type T,
 - $\bullet\,$ a list σ of parameter types,
 - an action α ,

・ 同・ ・ ヨ・・ ・ ヨ・

-1

- A functional ascription f includes the following components.
 - an artifact type T,
 - a list σ of parameter types,
 - an action α ,
 - \bullet an end φ

・ 同・ ・ ヨ・・ ・ ヨ・

-1

- A *functional ascription f* includes the following components.

 - an artifact type *T*,
 a list *σ* of parameter types,
 - an action α .
 - an end φ

▲□▶ ▲ □▶ ▲ □▶

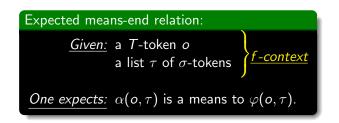
- A *functional ascription f* includes the following components.

 - an artifact type *T*,
 a list *σ* of parameter types,
 - an action α .
 - an end φ

Context types

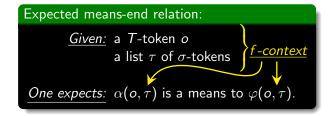
The structure of functional ascriptions

- A functional ascription f includes the following components.
 - an artifact type *T*,
 a list σ of parameter types,
 an action α,
 an end φ
 Takes parameters from


Expected means-end relation:

<u>*Given:*</u> a *T*-token oa list τ of σ -tokens

One expects: $\alpha(o, \tau)$ is a means to $\varphi(o, \tau)$.


The structure of functional ascriptions

- A functional ascription f includes the following components.
 - an artifact type *T*,
 a list σ of parameter types,
 an action α,
 an end φ
 Takes parameters from

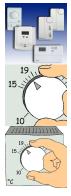
The structure of functional ascriptions

- A functional ascription f includes the following components.
 - an artifact type *T*,
 a list σ of parameter types,
 an action α,
 an end φ
 Takes parameters from

Thermostats are used to regulate temperature. Type: Thermo

Thermostats are used to regulate temperature.

Type: T hermo Parameter: $\{l, m, h\}$

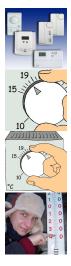


3

イロト イヨト イヨト イヨト

Thermostats are used to regulate temperature.

Type: \mathcal{T} hermoParameter: $\{l, m, h\}$ Action: $set_?(?)$



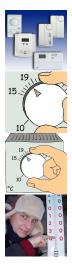
4

・日本 ・モト ・モン

Thermostats are used to regulate temperature.

Type: \mathcal{T} hermoParameter: $\{l, m, h\}$ Action: $\mathbf{set}_{?}(?)$ End: $\mathcal{T} \geq ?$

4


<ロ> (日) (日) (日) (日) (日)

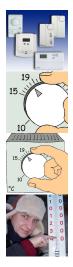
Thermostats are used to regulate temperature.

Type: \mathcal{T} hermoParameter: $\{l, m, h\}$ Action: $\mathbf{set}_{?}(?)$ End: $\mathcal{T} \geq ?$

An *f-context* is given by

• a thermostat o,

4


< □> < □> < □>

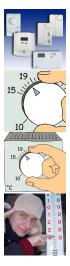
Thermostats are used to regulate temperature.

Type: \mathcal{T} hermoParameter: $\{l, m, h\}$ Action: $set_?(?)$ End: $\mathcal{T} \ge ?$

An *f-context* is given by

- a thermostat o,
- a setting $x \in \{l, m, h\}$.

з


・ 同 ト・ イ ヨ ト・ イ ヨ ト

Thermostats are used to regulate temperature.

Type:T hermoParameter: $\{I, m, h\}$ Action: $set_?(?)$ End:T > ?

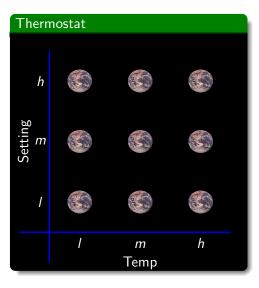
An *f-context* is given by

- a thermostat o,
- a setting $x \in \{I, m, h\}$.
- In an *f*-context $\langle o, x \rangle$,
 - our action is $set_o(x)$: set thermostat o to x.


・ 同 ト・ ・ ヨート・ ・ ヨート

Thermostats are used to regulate temperature.

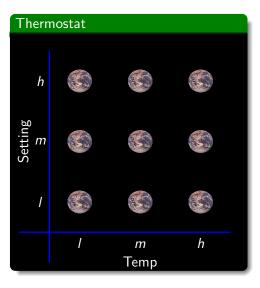
Type:T hermoParameter: $\{I, m, h\}$ Action: $set_?(?)$ End:T > ?


An *f-context* is given by

- a thermostat o,
- a setting $x \in \{I, m, h\}$.
- In an *f*-context $\langle o, x \rangle$,
 - our action is $set_o(x)$: set thermostat o to x.
 - our end is $T \ge x$.

(D) (A) (A)

Contexts and transition systems

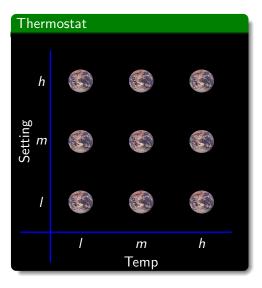


Each *f*-context $\langle o, x \rangle$ determines a PDL model.

向下 イヨト イヨト

Hughes Means-End Relations and Artifactual Functions

Contexts and transition systems

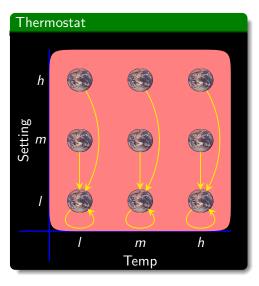


Each *f*-context $\langle o, x \rangle$ determines a PDL model.

• o: the artifact used.

• = > •

Contexts and transition systems



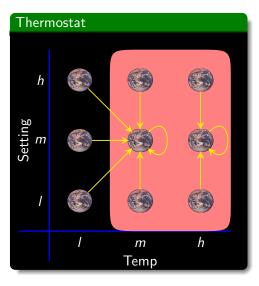
Each *f*-context $\langle o, x \rangle$ determines a PDL model.

- o: the artifact used.
- x: the setting.

• 3 > 1

Contexts and transition systems

Each *f*-context $\langle o, x \rangle$ determines a PDL model.


- o: the artifact used.
- x: the setting.

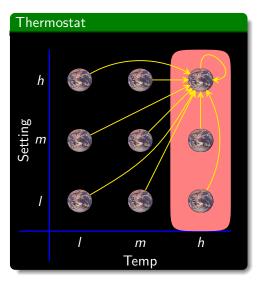
Examples:

• $\langle Working, I \rangle$.

向下 イヨト イヨト

Contexts and transition systems

Each *f*-context $\langle o, x \rangle$ determines a PDL model.


- o: the artifact used.
- x: the setting.

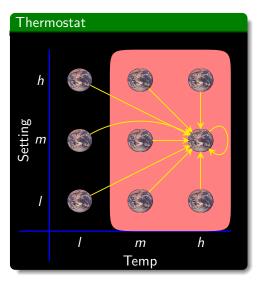
Examples:

- $\langle Working, I \rangle$.
- (Working, m).

向下 イヨト イヨト

Contexts and transition systems

Each *f*-context $\langle o, x \rangle$ determines a PDL model.


- o: the artifact used.
- x: the setting.

Examples:

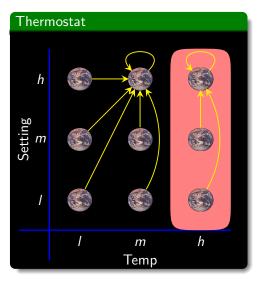
- $\langle Working, I \rangle$.
- (Working, m).
- (Working, h).

・ 同・ ・ ヨ・ ・ ヨ・

Contexts and transition systems

Each *f*-context $\langle o, x \rangle$ determines a PDL model.

• o: the artifact used.


• = > •

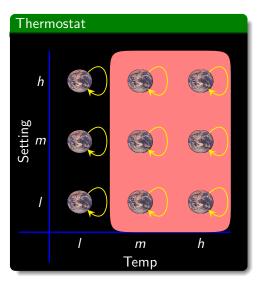
• x: the setting.

Examples:

• $\langle Miscal, m \rangle$.

Contexts and transition systems

Each *f*-context $\langle o, x \rangle$ determines a PDL model.


- o: the artifact used.
- x: the setting.

Examples:

• $\langle Miscal, m \rangle$.

• $\langle Weak, h \rangle$.

Contexts and transition systems

Each *f*-context $\langle o, x \rangle$ determines a PDL model.

- o: the artifact used.
- x: the setting.

Examples:

- (Miscal, m).
- $\langle Weak, h \rangle$.
- $\langle Broke, m \rangle$.

A (1) > A (2) > A

Fulfillment

An artifact o (weakly/strongly) fulfills f wrt τ \uparrow α is a (weak/strong) means to φ in $\mathcal{M}_{\langle o, \tau \rangle}$.

イロト イヨト イヨト イヨト

Fulfillment

An artifact
$$o$$
 (weakly/strongly) fulfills f wrt τ
 \uparrow
 α is a (weak/strong) means to φ in $\mathcal{M}_{\langle o, \tau \rangle}$.

A thermostat *t* fulfills *f* wrt *x* $\$ Setting *t* to *x* realizes $T \ge x$.

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

-1

Contexts and transition systems

Thermostat			
h			
Setting 3			
1			
	Ι	<i>m</i> Temp	h

Token	fulfills <i>f</i>
Working	I, m, h

Hughes Means-End Relations and Artifactual Functions

Contexts and transition systems

Thermostat			
h			
Setting 3			
I		6	
	Ι	<i>m</i> Temp	h

Token	fulfills <i>f</i>	
Working	I, m, h	
Miscal	l, m, h	

Hughes Means-End Relations and Artifactual Functions

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Contexts and transition systems

Thermostat			
h			
Setting 3			
I			
	I	<i>m</i> Temp	h

Token	fulfills <i>f</i>	
Working	I, m, h	
Miscal	I, m, h	
Broke	1	

Hughes Means-End Relations and Artifactual Functions

イロン イヨン イヨン イヨン

Fulfillment

An artifact
$$o$$
 (weakly/strongly) fulfills f wrt τ
 \uparrow
 α is a (weak/strong) means to φ in $\mathcal{M}_{\langle o, \tau \rangle}$.

A thermostat *t* fulfills *f* wrt *x* $\$ Setting *t* to *x* realizes *T* \ge *x*.

A thermostat
$$t$$
 universally fulfills f
 \uparrow
 t fulfills f wrt every x .

<u>Defined</u>: token fulfills a function f.

(日) (四) (注) (注) (注)

<u>Defined</u>: token fulfills a function f.

When does a *subtype* $T' \leq T$ fulfill *f*?

<u>Defined</u>: token fulfills a function f.

When does a subtype $T' \leq T$ fulfill f?

Universal fulfillment:

every $o \in T'$ fulfills f.

・ロト ・ 同ト ・ ヨト ・ ヨト

<u>Defined</u>: token fulfills a function f.

When does a subtype $T' \leq T$ fulfill f?

Universal fulfillment:

every $o \in T'$ fulfills f.

Normal fulfillment:

every "normal" $o \in T'$ fulfills f.

Each type T comes with a set N_T of normal tokens.

イロト イヨト イヨト イヨト

Each type T comes with a set N_T of <u>normal</u> tokens.

Are normal tokens "real" tokens?


```
Each type T comes with a set N_T of <u>normal</u> tokens.
```

Are normal tokens "real" tokens? NO!

every T-token is broken xnormal T-tokens are broken.

・ 同 ト・ ・ ヨート・ ・ ヨート

```
Each type T comes with a set N_T of <u>normal</u> tokens.
```

Are normal tokens "real" tokens? NO!

every *T*-token is broken **X** normal *T*-tokens are broken.

```
Normal tokens are useful fictions.
Express how T-things are expected to behave.
```


・ 同・ ・ ヨ・ ・ ヨ・

Normal tokens: the excuses

We add fictional objects to our semantics? What are you thinking?

< □> < □> < □>

Normal tokens: the excuses

We add fictional objects to our semantics?

What are you thinking?

• Counterfactuals bad. Fictions barely worse.

・ 同・ ・ ヨ・ ・ ヨ・

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.

・ 同・ ・ ヨ・・ ・ ヨ・

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.
- Formally simple, conceptually opaque.

・ 同・ ・ ヨ・・ ・ ヨ・

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.
- Formally simple, conceptually opaque.
- Gives sense of malfunction.

向下 イヨト イヨト

We add fictional objects to our semantics?

What are you thinking?

- Counterfactuals bad. Fictions barely worse.
- Fictional tokens approximate intuitions.
- Formally simple, conceptually opaque.
- Gives sense of malfunction.
- Distinguishes subtypes.

Normal tokens: subtypes

Subtypes do not always inherit functional ascriptions.

4

(日) (四) (注) (注)

Normal tokens: subtypes

Subtypes do not always inherit functional ascriptions.

```
f is a function of T and T' \leq T

X

T' fulfills f.
```


3

< ロト (周) (日) (日)

Normal tokens: subtypes

Subtypes do not always inherit functional ascriptions.

f is a function of T and $T' \leq T$ XT' fulfills f.

 $\frac{\text{Universal fulfillment:}}{T \text{ fulfills } f} \Rightarrow T' \text{ fulfills } f$

イロト イポト イヨト イヨト

Normal tokens: subtypes

Subtypes do not always inherit functional ascriptions.

f is a function of T and $T' \leq T$ XT' fulfills f

 $\begin{array}{rcl} \underline{\text{Universal fulfillment:}} & T \text{ fulfills } f \implies T' \text{ fulfills } f \\ \hline \underline{\text{Normal fulfillment:}} & T \text{ fulfills } f & \underline{and} & N_{T'} \subseteq N_T \implies T' \text{ fulfills } f \end{array}$

(D) (A) (A)

Normal tokens: subtypes

Subtypes do not always inherit functional ascriptions.

```
f is a function of T and T' \leq T

\overset{\bullet}{\underbrace{}}
T' \text{ fulfills } f.
```

 $\begin{array}{rcl} \underline{\text{Universal fulfillment:}} & T \text{ fulfills } f & \Rightarrow & T' \text{ fulfills } f \\ \underline{\text{Normal fulfillment:}} & \\ T \text{ fulfills } f & \underline{and} & N_{T'} \subseteq N_T & \Rightarrow & T' \text{ fulfills } f \end{array}$

Normal flare guns aren't normal guns.

(D) (A) (A)

• A philosophical treatment of "normal tokens".

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

- A philosophical treatment of "normal tokens".
- Add efficacy to functions.

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

- A philosophical treatment of "normal tokens".
- Add efficacy to functions.
- A formalization of malfunction.

- A philosophical treatment of "normal tokens".
- Add efficacy to functions.
- A formalization of malfunction.
- Types and function inheritance.

-2

- A philosophical treatment of "normal tokens".
- Add efficacy to functions.
- A formalization of malfunction.
- Types and function inheritance.
- Everything else.

-2