Means-end Relations and a Measure of Efficacy

Jesse Hughes¹ Albert Esterline² Bahram Kimiaghalam²

¹Technical University of Eindhoven

²North Carolina A&T

July 4, 2005

Means-end relations Efficacy via fuzzy logic

Outline

Means-end relations

- Interest I: Practical syllogisms
- Interest II: Functional ascriptions
- Propositional Dynamic Logic

2 Efficacy via fuzzy logic

- Reliability as a fuzzy operator
- The resulting fuzzy logic

Means-end relations in practical syllogisms

Practical reasoning is concerned with actions to attain desired results.

Typical practical syllogisms include premises:

- ${\, \bullet \,}$ an assertion that some end φ is desirable,
- \bullet an assertion that (given ψ), the action lpha is related to arphi,
- an assertion that ψ .

The conclusion is an *action* or an *intention*.

This premise is a means-end relation.

向下 イヨト イヨト

Means-end relations Efficacy via fuzzy logic

An example from von Wright

I want to make the hut habitable. Unless I heat the hut, it will not be habitable. Therefore I must heat the hut.

- Expression of an agent's desire, Note: distinct premises
- A necessary means-end relation,⁴
- Concludes in a *necessary* action.

But necessary means-end relations are a bit tricky.

向下 イヨト イヨト

Functional ascriptions

- "The function of the heart is to pump blood."
- "That switch mutes the television."
- "The subroutine ensures that the user is authorized."
- "The magician's assistant is for distracting the audience."

We ascribe functions to biological stuff, artifacts, algorithms, personal roles...

Means-end relations Efficacy via fuzzy logic

How functions relate to means and ends

"That switch mutes the television."
↓
One can use the switch to mute the television.
↓
Some action involving the switch will cause the television to be muted.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Functions imply means-end relations.
- Doesn't imply desirability of the end.
- Needed: means-end semantics
 - distinct of desirability
 - distinct from theory of practical reasoning

Initial analysis of means-end relations

- An end is some desirable condition a proposition.
- A means is a way of making the end true.
- Means change things: means are actions.

Some controversies:

- Ends-in-themselves?
- Objects as means?

Means-end relations Efficacy via fuzzy logic Propositional Dynamic Logic

PDL syntax

Propositional Dynamic Logic is a logic of actions.

Basic types:

- a set act of actions,
 - Closed under:
 - sequential composition α ; β
 - non-deterministic choice $\alpha \cup \beta$
 - test φ?
 - iteration α^*
- a set **prop** of *propositions*.
 - Closed under:
 - boolean connectives,
 - dynamic operators $[\alpha]\varphi$, $\langle \alpha \rangle \varphi$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Intuitions:

- $[\alpha]\varphi$: after doing α , φ will hold.
- $\langle \alpha \rangle \varphi$: after doing α , φ might hold.

Hughes, Esterline, Kimiaghalam Means-end Relations and a Measure of Efficacy

PDL semantics

Possible world semantics with transition systems for each action α .

 $w \xrightarrow{\alpha} w'$ means:

one can reach w' by doing α in w.

$$w \models [\alpha]\varphi \quad iff \ \forall \ w \xrightarrow{\alpha} w' \ . \ w' \models \varphi.$$
$$w \models \langle \alpha \rangle \varphi \quad iff \ \exists \ w \xrightarrow{\alpha} w' \ . \ w' \models \varphi.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの

Weak and strong means-end relations

A means is an action α that can realize one's end φ .

Two interpretations:

・ 同 ト・ イ ヨ ト・ イ ヨ ト

Means distinguished by efficacy

Different means to a common end have different degrees of reliability.

End: Get 12 points with one dart.

Three different means:

- Throw for 12.
- Throw for double 6.
- Throw for triple 4.

イロト イポト イヨト イヨト

Efficacy: The degree of reliability of a means to an end.

From non-determinism to probabilities

Efficacy is a measure of likelihoods.

PDL includes non-determinism, not probabilities.

Fix (semantic): use *probabilistic* transition structures.

 $w \xrightarrow[x]{} w'$ means that doing α in w has probability xof resulting in w'.

(日) (周) (日) (日) (日)

Write:
$$P(w \longrightarrow w') = x$$
.

From non-determinism to probabilities

Syntactic fix?

- Probabilistic Computation Tree Logic (pCTL)?
 - Index dynamic operators, like $[\alpha]_{\geq x}$, $\langle \alpha \rangle_{\geq x}$.
 - Nesting requires picking x's.
- Probabilistic PDL?
 - Truth functional.
 - Assigns values in [0, 1] to world-formula pairs.

・ 同 ト・ ・ ヨ ト・ ・ ヨ ト・

- · Logic in loose sense.
- Fuzzy PDL.

But probability \neq fuzziness...

Slogan: Probabilities and fuzziness are different.

But one can use probabilities to define fuzzy predicates.

Hajek, et al., uses distributions on propositional formulas to define "Probably φ ".

Truth degree of "Probably φ " = $P(\varphi)$.

Reliability as a fuzzy proposition

"Reliably", like "Probably", is a vague operator.

In PDL: $\langle \alpha \rangle \varphi \Leftrightarrow \alpha \text{ will possibly realize } \varphi$ In fuzzy PDL: $\langle \alpha \rangle \varphi \Leftrightarrow \alpha \text{ will probably realize } \varphi$ $\Leftrightarrow \alpha \text{ reliably realizes } \varphi$

$$\llbracket \langle \alpha \rangle \varphi \rrbracket(w) = \sum_{w' \in \mathcal{W}} P(w \stackrel{\alpha}{\longrightarrow} w') \cdot \llbracket \varphi \rrbracket(w').$$

- Like decision theory, we use means for expected outcomes.
- Unlike decision theory, there are no utilities involved.
- Elegant treatment of complex ends, like $\langle \alpha \rangle \varphi \wedge \langle \beta \rangle \psi$.

Means-end relations Efficacy via fuzzy logic

Fuzzy ends An accidental advantage

Weapons are for causing harm. Examples: slingshot, nuke This end is fuzzy. Fuzzy PDL allows for fuzzy ends. A nuke is more effective in

causing harm than a slingshot.

(1日) (1日) (1日)

(Duh.)

The resulting fuzzy logic

Extending the logic to other connectives

Suppose J and L are cooperative but incommunicado.

- / knows that / will either do
 - *m* in order to realize *P* or
 - *n* in order to realize *Q*.

He wants to ensure that L will succeed, whichever she chooses. End: $\langle m \rangle P \land \langle n \rangle Q$. Aim: maximize min{ $[\![\langle m \rangle P]\!](w), [\![\langle n \rangle Q]\!](w)$ }.

$$\llbracket \varphi \wedge \psi
rbracket(w) = \min \bigl\{ \llbracket \varphi
rbracket(w), \ \llbracket \psi
rbracket(w)
bracket$$

(日) (周) (日) (日) (日)

The semantics of fuzzy PDL

On formulas

$$\begin{split} \llbracket \langle \alpha \rangle \varphi \rrbracket(w) &= \sum_{w' \in \mathcal{W}} P(w \xrightarrow{\alpha} w') \cdot \llbracket \varphi \rrbracket(w') \\ \llbracket \varphi \wedge \psi \rrbracket(w) &= \min \{ \llbracket \varphi \rrbracket(w), \llbracket \psi \rrbracket(w) \} &= \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\ \llbracket \varphi \vee \psi \rrbracket(w) &= \max \{ \llbracket \varphi \rrbracket(w), \llbracket \psi \rrbracket(w) \} &= \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \\ \llbracket \neg \varphi \rrbracket(w) &= 1 - \llbracket \varphi \rrbracket(w) &= \mathcal{W} \setminus \llbracket \varphi \rrbracket \\ \llbracket \varphi \to \psi \rrbracket(w) &= \begin{cases} 1 & \text{if } \llbracket \varphi \rrbracket(w) \leq \llbracket \psi \rrbracket(w), \\ \llbracket \psi \rrbracket(w) &= \text{leg} \end{cases} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの

The semantics of fuzzy PDL

On actions

$$\begin{split} \llbracket \alpha; \beta \rrbracket(w)(w') &= \sum_{w'' \in \mathcal{W}} P(w \xrightarrow{\alpha} w'') \cdot P(w'' \xrightarrow{\beta} w') \\ \llbracket \varphi? \rrbracket(w)(w') &= \begin{cases} \llbracket \varphi \rrbracket(w) & \text{if } w = w'; \\ 0 & \text{else.} \end{cases} \\ \llbracket \varphi \cup \psi \rrbracket(w)(w') \end{cases}$$

$$\left[\varphi^* \right] (w) (w')$$
 undefined.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの

Logical properties Validity and Soundness

Positive results:

- Axioms:
 - Usual axioms for this fuzzy logic
 - (De Morgan and Implication axioms)
 - Composition: $[\alpha; \beta]\varphi \leftrightarrow [\alpha][\beta]\varphi$
- Rules:
 - Modus ponens, cut
 - Necessitation: $\varphi/[\alpha]\varphi$

Negative results:

- Axioms:
 - K: $[\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\psi])$
 - Distributivity: $[\alpha](\varphi \land \psi) \leftrightarrow ([\alpha]\varphi \land [\alpha]\psi)$
 - Test: $[\psi?]\varphi \leftrightarrow (\psi \rightarrow \varphi)$

(日) (周) (日) (日) (日)

Logical properties Completeness

I wish.

But not with these semantics.

Ongoing work...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三目目 のへの

Concluding remarks

- Include non-deterministic features (in paper).
- Add to formalization of functions (SPT 2005).
- Investigate better behaved semantics.

Adding efficacy to PDL

Concerns:

- Primary: Adding probabilities to transitions.
- Secondary: Fuzzy ends (like "causing harm").

Aims:

- Keep PDL as language for means-end relations.
- Minimal semantic changes.
- Truth-functional semantics.
- Include complex ends like $\langle \alpha \rangle \varphi \wedge \langle \beta \rangle \psi$.

Proposal: Interpret PDL as fuzzy logic.

레이 소문이 소문이 문법