Admissible Digit Sets

Jesse Hughes ${ }^{1,2}$ Milad Niqui ${ }^{2}$
${ }^{1}$ Technical University of Eindhoven
${ }^{2}$ Radboud University of Nijmegen

September 28, 2004

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets - The Stern-Brocot representation

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation
(2) Admissibility

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation
(2) Admissibility
- Admissible digit sets
- The homographic algorithm

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation
(2) Admissibility
- Admissible digit sets
- The homographic algorithm

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation
(2) Admissibility
- Admissible digit sets
- The homographic algorithm

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation
(2) Admissibility
- Admissible digit sets
- The homographic algorithm

The standard binary representation of $[0,1]$.

Think of binary representations in $[0,1]$, like

$$
0.010100010 \ldots
$$

The standard binary representation of $[0,1]$.

Think of binary representations in $[0,1]$, like

$$
0.010100010 \ldots
$$

$$
\{0,1\}^{\omega} \longrightarrow[0,1]
$$

The standard binary representation of $[0,1]$.

Think of binary representations in $[0,1]$, like

$$
0.010100010 \ldots
$$

$$
\begin{aligned}
&\{0,1\}^{\omega} \longrightarrow[0,1] \\
& x_{1} x_{2} x_{3} \ldots \longmapsto \sum_{i=0}^{\infty} x_{i} \cdot 2^{-i}
\end{aligned}
$$

The standard binary representation of $[0,1]$.

Think: receiving one bit at a time.
Each bit restricts the set of possibilities.

The standard binary representation of $[0,1]$.

Think: receiving one bit at a time.
Each bit restricts the set of possibilities.

options are reduced

The standard binary representation of $[0,1]$.

Think: receiving one bit at a time.
Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in $[0,1]$.
- When we see " 0.0 ", the options are reduced - " 0.01 " reduces them further

The standard binary representation of $[0,1]$.

Think: receiving one bit at a time.
Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in $[0,1]$.
- When we see " 0.0 ", the options are reduced.
- "0.01" reduces them further.

The standard binary representation of $[0,1]$.

Think: receiving one bit at a time.
Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in $[0,1]$.
- When we see " 0.0 ", the options are reduced.
- "0.01" reduces them further.

The standard binary representation of $[0,1]$.

$$
\begin{gathered}
\vec{x}=x_{1} x_{2} x_{3} \ldots \\
S_{0}^{\vec{x}} \supsetneqq S_{1}^{\vec{x}} \supsetneqq S_{2}^{\vec{x}} \supsetneqq S_{3}^{\vec{x}} \supsetneqq \cdots
\end{gathered}
$$

Some features: - $\bigcap S_{i}^{\mathbb{x}}$ is a singleton - For each x, there is a sequence \vec{x} such that

The standard binary representation of $[0,1]$.

$$
\begin{gathered}
\vec{x}=x_{1} x_{2} x_{3} \ldots \\
S_{0}^{\vec{x}} \supsetneqq S_{1}^{\vec{x}} \supsetneqq S_{2}^{\vec{x}} \supsetneqq S_{3}^{\vec{x}} \supsetneqq \cdots
\end{gathered}
$$

Some features:

- $\cap S_{i}^{\bar{x}}$ is a singleton.
- For each x, there is a sequence \vec{x} such that

Each sequence represents some x and each x is represented.

The standard binary representation of $[0,1]$.

$$
\begin{gathered}
\vec{x}=x_{1} x_{2} x_{3} \ldots \\
S_{0}^{\vec{x}} \supsetneqq S_{1}^{\vec{x}} \supsetneqq S_{2}^{\vec{x}} \supsetneqq S_{3}^{\vec{x}} \supsetneqq \cdots
\end{gathered}
$$

Some features:

- $\cap S_{i}^{\vec{x}}$ is a singleton.
- For each x, there is a sequence \vec{x} such that $\cap S_{i}^{\vec{x}}=\{x\}$.

Each sequence represents some x and each x is represented

The standard binary representation of $[0,1]$.

$$
\begin{gathered}
\vec{x}=x_{1} x_{2} x_{3} \ldots \\
S_{0}^{\vec{x}} \supsetneqq S_{1}^{\vec{x}} \supsetneqq S_{2}^{\vec{x}} \supsetneqq S_{3}^{\vec{x}} \supsetneqq \cdots
\end{gathered}
$$

Some features:

- $\cap S_{i}^{\bar{X}}$ is a singleton.
- For each x, there is a sequence \vec{x} such that $\cap S_{i}^{\bar{X}}=\{x\}$.
Each sequence represents some x and each x is represented.

How to construct the sets $S_{i}^{\vec{\chi}}$

$$
\phi_{0}(x)=\frac{x}{2}
$$

How to construct the sets $S_{i}^{\vec{x}}$

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

How to construct the sets $S_{i}^{\vec{x}}$

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

$$
S_{0}^{01 \ldots}=[0,1]
$$

$$
S_{1}^{01 \cdots}=\phi_{0}([0,1])
$$

$$
S_{2}^{01 \cdots}=\phi_{0} \circ \phi_{1}([0,1])
$$

How to construct the sets $S_{i}^{\vec{\chi}}$

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

$$
S_{0}^{01 \ldots}=[0,1]
$$

$$
S_{1}^{01 \cdots}=\phi_{0}([0,1])
$$

$$
S_{2}^{01 \cdots}=\phi_{0} \circ \phi_{1}([0,1])
$$

$$
S_{i}^{\vec{x}}=\phi_{x_{0}} \circ \ldots \circ \phi_{x_{i}}([0,1])
$$

$$
\bigcap S_{i}^{\vec{x}}=\left\{0 \cdot x_{0} x_{1} \ldots\right\}
$$

How to construct the sets $S_{i}^{\vec{\chi}}$

$$
\begin{aligned}
& \phi_{0}(x)=\frac{x}{2} \\
& \phi_{1}(x)=\frac{x+1}{2} \\
& S_{0}^{01 \ldots}= {[0,1] } \\
& S_{1}^{01 \ldots}= \phi_{0}([0,1]) \\
& S_{2}^{01 \ldots}= \phi_{0} \circ \phi_{1}([0,1]) \\
& S_{i}^{\vec{x}}= \phi_{x_{0}} \circ \ldots \circ \phi_{x_{i}}([0,1]) \\
& \bigcap_{i \in \mathbb{N}} S_{i}^{\vec{x}}=\left\{0 . x_{0} x_{1} \ldots\right\}
\end{aligned}
$$

$1,+\infty$, what's the difference?

Work with $[0,+\infty]$ or $[0,1]$?

The choice is arbitrary.

$1,+\infty$, what's the difference?

Work with $[0,+\infty]$ or $[0,1]$?
The choice is arbitrary.
Squint and you can't tell the difference.

$1,+\infty$, what's the difference?

Work with $[0,+\infty]$ or $[0,1]$?
The choice is arbitrary.
Squint and you can't tell the difference.

Möbius maps

$$
\text { Recall } \phi_{0}(x)=\frac{x}{2}, \quad \phi_{1}(x)=\frac{x+1}{2} .
$$

Möbius map: a function

where $a, b, c, d \in \mathbb{R}$.
We are interested in Möbius maps that are

Möbius maps

Recall $\phi_{0}(x)=\frac{x}{2}, \quad \phi_{1}(x)=\frac{x+1}{2}$.
Möbius map: a function

$$
A(x)=\frac{a x+b}{c x+d}
$$

where $a, b, c, d \in \mathbb{R}$.
We are interested in Möbius maps that are

Möbius maps

Recall $\phi_{0}(x)=\frac{x}{2}, \quad \phi_{1}(x)=\frac{x+1}{2}$.
Möbius map: a function

$$
A(x)=\frac{a x+b}{c x+d}
$$

where $a, b, c, d \in \mathbb{R}$.
We are interested in Möbius maps that are

- strictly increasing,

Möbius maps

Recall $\phi_{0}(x)=\frac{x}{2}, \quad \phi_{1}(x)=\frac{x+1}{2}$.
Möbius map: a function

$$
A(x)=\frac{a x+b}{c x+d}
$$

where $a, b, c, d \in \mathbb{R}$.
We are interested in Möbius maps that are

- strictly increasing,
- refining $(A:[0,+\infty] \rightarrow[0,+\infty])$.

Digit sets

Möbius maps are our digits.

Digit sets

Möbius maps are our digits.

Let $\Phi=\left\{\phi_{0}, \ldots, \phi_{k}\right\}$ be a set of Möbius maps.
A sequence $\vec{x}=\phi_{i_{0}} \phi_{i_{1}} \phi_{i_{2}} \ldots$ represents x if

Digit sets

Möbius maps are our digits.
Let $\Phi=\left\{\phi_{0}, \ldots, \phi_{k}\right\}$ be a set of Möbius maps.
A sequence $\vec{x}=\phi_{i_{0}} \phi_{i_{1}} \phi_{i_{2}} \ldots$ represents x if

$$
\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_{0}} \circ \phi_{i_{1}} \circ \ldots \circ \phi_{i_{n}}([0,+\infty])}_{S_{n}^{\vec{x}}}=\{x\} .
$$

Digit sets

Möbius maps are our digits.
Let $\Phi=\left\{\phi_{0}, \ldots, \phi_{k}\right\}$ be a set of Möbius maps.
A sequence $\vec{x}=\phi_{i_{0}} \phi_{i_{1}} \phi_{i_{2}} \ldots$ represents x if

$$
\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_{0}} \circ \phi_{i_{1}} \circ \ldots \circ \phi_{i_{n}}([0,+\infty])}_{S_{n}^{\vec{x}}}=\{x\} .
$$

Digit sets

Möbius maps are our digits.
Let $\Phi=\left\{\phi_{0}, \ldots, \phi_{k}\right\}$ be a set of Möbius maps.
A sequence $\vec{x}=\phi_{i_{0}} \phi_{i_{1}} \phi_{i_{2}} \ldots$ represents x if

$$
\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_{0}} \circ \phi_{i_{1}} \circ \ldots \circ \phi_{i_{n}}([0,+\infty])}_{S_{n}^{\overparen{ }}}=\{x\} .
$$

Φ is a digit set if each x is represented.

Digit sets

Möbius maps are our digits.
Let $\Phi=\left\{\phi_{0}, \ldots, \phi_{k}\right\}$ be a set of Möbius maps.
A sequence $\vec{x}=\phi_{i_{0}} \phi_{i_{1}} \phi_{i_{2}} \ldots$ represents x if

Φ is a digit set if each x is represented.

Good digit sets

Φ is a good digit set if
(1) Loosely: $\cap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$

Good digit sets are digit sets.

Good digit sets

Φ is a good digit set if

(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$.

Theorem
Good digit sets are digit sets.
Good digit sets yield a total representation,

Good digit sets

Φ is a good digit set if

(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$.

Theorem
Good digit sets are digit sets.
Good digit sets yield a total representation, i.e. $\Phi^{\omega} \rightarrow[0,+\infty]$ is

Good digit sets

Φ is a good digit set if

(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$.

Theorem
Good digit sets are digit sets.
Good digit sets yield a total representation, i.e. $\Phi^{\omega} \rightarrow[0,+\infty]$ is

- total,
- continuous,

Good digit sets

Φ is a good digit set if

(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$.

Theorem

Good digit sets are digit sets.
Good digit sets yield a total representation, i.e. $\phi^{\omega} \rightarrow[0,+\infty]$ is

- total,
- continuous,
- surjective

Good digit sets

Φ is a good digit set if

(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$.

Theorem

Good digit sets are digit sets.
Good digit sets yield a total representation, i.e. $\phi^{\omega} \rightarrow[0,+\infty]$ is

- total,
- continuous,
- surjective.

The Stern-Brocot representation is a digit set

How to make the tree:
If my parents are $\frac{a}{b}$ and $\frac{c}{d}$, then I am $\frac{a+c}{b+d}$.

The Stern-Brocot representation is a digit set

The Stern-Brocot representation maps finite sequences of $\{L, R\}$ to rationals.

The Stern-Brocot representation is a digit set

The Stern-Brocot representation maps finite sequences of $\{L, R\}$ to rationals.
Easy to show: infinite sequences yield Cauchy sequences of rationals.

The Stern-Brocot representation is a digit set

The Stern-Brocot representation maps finite sequences of $\{L, R\}$ to rationals.
Easy to show: infinite sequences yield Cauchy sequences of rationals.
Careful with that metric!

The Stern-Brocot representation is a digit set
(\%)

$$
\begin{gathered}
L \ldots \in[0,1] \\
L R \ldots \in\left[\frac{1}{2}, 1\right] \\
L R R \ldots \in\left[\frac{2}{3}, 1\right]
\end{gathered}
$$

A nested sequence of sets S_{i}^{\times}

Each $S_{i}^{\vec{x}}$ is bounded by

The Stern-Brocot representation is a digit set

$$
\begin{gathered}
L \ldots \in[0,1] \\
L R \ldots \in\left[\frac{1}{2}, 1\right] \\
L R R \ldots \in\left[\frac{2}{3}, 1\right]
\end{gathered}
$$

A nested sequence of sets $S_{i}^{\bar{x}}$.
Each $S_{i}^{\vec{x}}$ is bounded by
the parents of $x_{1} x_{2} \ldots x_{i}$

The Stern-Brocot representation is a digit set

$$
\begin{gathered}
L \ldots \in[0,1] \\
L R \ldots \in\left[\frac{1}{2}, 1\right] \\
L R R \ldots \in\left[\frac{2}{3}, 1\right]
\end{gathered}
$$

A nested sequence of sets $S_{i}^{\vec{*}}$.
Each $S_{i}^{\vec{x}}$ is bounded by the parents of $x_{1} x_{2} \ldots x_{i}$.

The Stern-Brocot representation is a digit set
(\%)

$$
\phi_{L}(x)=\frac{x}{x+1} \quad \phi_{R}(x)=x+1
$$

$\left\{\phi_{L}, \phi_{R}\right\}$ is a good digit set.

Outline

(1) Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation
(2) Admissibility
- Admissible digit sets
- The homographic algorithm

Φ-Computability

Let Φ be a good digit set.
$f:[0,+\infty] \rightarrow[0,+\infty]$ is Φ-computable iff f has a continuous ϕ^{ω} lifting.

Good digit sets aren't very good
$x \longmapsto 2 x$ isn't Stern-Rrocot-comnutable

Φ-Computability

Let Φ be a good digit set.
$f:[0,+\infty] \rightarrow[0,+\infty]$ is Φ-computable iff f has a continuous ϕ^{ω} lifting.

Good digit sets aren't very good.
$x \mapsto 2 x$ isn't Stern-Brocot-computable.

Φ-Computability

Let Φ be a good digit set.
$f:[0,+\infty] \rightarrow[0,+\infty]$ is Φ-computable iff f has a continuous Φ^{ω} lifting.

Good digit sets aren't very good.
$x \mapsto 2 x$ isn't Stern-Brocot-computable.

Admissible representations

$p: \Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation if it is

- continuous,
- surjective,

Admissible representations

$p: \Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation if it is

- continuous,
- surjective,
- maximal, i.e. for every continuous r :

Admissible representations

$p: \Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation if it is

- continuous,
- surjective,
- maximal, i.e. for every continuous r :

If $\phi^{\omega} \rightarrow[0,+\infty]$ is admissible, any continuous f is ϕ-computable.

Admissible representations

$p: \Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation if it is

- continuous,
- surjective,
- maximal, i.e. for every continuous r :

If $\Phi^{\omega} \rightarrow[0,+\infty]$ is admissible, any continuous f is Φ-computable.

Admissible digit sets

Φ is an admissible digit set (ADS) if
(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}((0,+\infty))$ cover $(0,+\infty)$
(2) replaces
for good digit sets.

Admissible digit sets

Φ is an admissible digit set (ADS) if
(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}((0,+\infty))$ cover $(0,+\infty)$.
(2) replaces
for good digit sets.

Admissible digit sets

Φ is an admissible digit set (ADS) if
(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}((0,+\infty))$ cover $(0,+\infty)$.
(2) replaces

- The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$. for good digit sets.

Not ADS!

representations.

Admissible digit sets

Not ADS!
Φ is an admissible digit set (ADS) if
(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}((0,+\infty))$ cover $(0,+\infty)$.
(2) replaces

- The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$. for good digit sets.

Theorem
Admissible digit sets yield admissible
representations.

Admissible digit sets

Not ADS!
Φ is an admissible digit set (ADS) if
(1) Loosely: $\bigcap S_{i}^{\vec{x}}$ is always a singleton.
(2) The sets $\phi_{i}((0,+\infty))$ cover $(0,+\infty)$.
(2) replaces

- The sets $\phi_{i}([0,+\infty])$ cover $[0,+\infty]$. for good digit sets.

Theorem
Admissible digit sets yield admissible representations.

The Stern-Brocot representation is not ADS

S-B is a good digit set. . .

but not an admissible digit set.

$$
\begin{aligned}
\phi_{L}([0,+\infty]) & =[0,1] \\
\phi_{R}([0,+\infty]) & =[1,+\infty]
\end{aligned}
$$

Solution: Add $\phi_{M}(x)=\frac{2 x+1}{x+2}$.

The Stern-Brocot representation is not ADS

S-B is a good digit set. . . but not an admissible digit set.

$$
\begin{aligned}
\phi_{L}((0,+\infty)) & =(0,1) \\
\phi_{R}((0,+\infty)) & =(1,+\infty)
\end{aligned}
$$

Solution: Add $\phi_{M}(x)=\frac{2 x+1}{x+2}$.

The Stern-Brocot representation is not ADS

$$
\begin{aligned}
& \text { S-B is a good digit set. . } \\
& \text { but not an admissible digit set. } \\
& \qquad \begin{aligned}
\phi_{L}((0,+\infty)) & =(0,1) \\
\phi_{R}((0,+\infty)) & =(1,+\infty)
\end{aligned}
\end{aligned}
$$

Solution: Add $\phi_{M}(x)=\frac{2 x+1}{x+2}$.

Why this subsection doesn't matter.

Let Φ be an ADS.
Aim: Construct an algorithm $H(A,-)$ computing Möbius maps A.
But $\Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation.
Any continuous f

Why this subsection doesn't matter.

Let Φ be an ADS.
Aim: Construct an algorithm $H(A,-)$ computing Möbius maps A.
But $\Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation.
Any continuous $f:[0,+\infty] \rightarrow[0,+\infty]$ lifts to Φ^{ω}.

But formal verifications require explicit algorithms.

Why this subsection doesn't matter.

Let Φ be an ADS.
Aim: Construct an algorithm $H(A,-)$ computing Möbius maps A.
But $\Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation.
Any continuous $f:[0,+\infty] \rightarrow[0,+\infty]$ lifts to Φ^{ω}.

But formal verifications require explicit algorithms.

Why this subsection does matter.

Let Φ be an ADS.
Aim: Construct an algorithm $H(A,-)$ computing Möbius maps A.
But $\Phi^{\omega} \rightarrow[0,+\infty]$ is an admissible representation.
Any continuous $f:[0,+\infty] \rightarrow[0,+\infty]$ lifts to Φ^{ω}.

But formal verifications require explicit algorithms.

An algorithm for computing Möbius maps

Let \mathbb{M} be the set of refining Möbius maps.
We explicitly defined $H: \mathbb{M} \times \Phi^{\omega} \rightarrow \Phi^{\omega}$ so that

H is the homographic algorithm.

An algorithm for computing Möbius maps

Let \mathbb{M} be the set of refining Möbius maps.
We explicitly defined $H: \mathbb{M} \times \Phi^{\omega} \rightarrow \Phi^{\omega}$ so that

$$
\begin{gathered}
\Phi^{\omega}--\stackrel{H(A,-)->}{ } \Phi^{\omega} \\
p_{\downarrow} \\
{[0,+\infty] \xrightarrow[A]{\longrightarrow}[0,+\infty]}
\end{gathered}
$$

H is the homographic algorithm.

An algorithm for computing Möbius maps

Let \mathbb{M} be the set of refining Möbius maps.
We explicitly defined $H: \mathbb{M} \times \Phi^{\omega} \rightarrow \Phi^{\omega}$ so that
H is the homographic algorithm.

The very (very) rough idea behind the algorithm (but with pictures)
H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or

The very (very) rough idea behind the algorithm (but with pictures)
H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or

The very (very) rough idea behind the algorithm (but with pictures)
H is the homographic algorithm.

Least fixed point
construction that

- outputs a digit when possible or
- absorbs more input when needed.

The very (very) rough idea behind the algorithm (but with pictures)
H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or
- absorbs more input when needed.

The very (very) rough idea behind the algorithm (but with pictures)
H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or
- absorbs more input when needed.

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
- total representations
- total, admissible representations

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
- total representations
- total, admissible representations
- modified Stern-Brocot to do formal arithmetic

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
- total representations
- total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
- total representations
- total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
- total representations
- total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

Outline

(3) Appendix

- Additional material

Möbius maps and matrices

$$
A(x)=\frac{a x+b}{c x+d}
$$

Same thing: A matrix $M_{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Let $x, y \in[0,+\infty)$.

Möbius maps and matrices

$$
A(x)=\frac{a x+b}{c x+d}
$$

Same thing: A matrix $M_{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Let $x, y \in[0,+\infty)$.

$$
\binom{x}{y} \mapsto \begin{cases}\frac{x}{y} & \text { if } y \neq 0 \\ +\infty & \text { else }\end{cases}
$$

Composition of Möbius maps is the same as multiplication of

Möbius maps and matrices

$$
A(x)=\frac{a x+b}{c x+d}
$$

Same thing: A matrix $M_{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Let $x, y \in[0,+\infty)$.

$$
\begin{gathered}
\binom{x}{y} \mapsto \begin{cases}\frac{x}{y} & \text { if } y \neq 0, \\
+\infty & \text { else. }\end{cases} \\
A\left(\frac{x}{y}\right)^{\prime \prime}=" M_{A} \cdot\binom{x}{y}
\end{gathered}
$$

Composition of Möbius maps is the same as multiplication of

Möbius maps and matrices

$$
A(x)=\frac{a x+b}{c x+d}
$$

Same thing: A matrix $M_{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Let $x, y \in[0,+\infty)$.

$$
\begin{gathered}
\binom{x}{y} \mapsto \begin{cases}\frac{x}{y} & \text { if } y \neq 0, \\
+\infty & \text { else. }\end{cases} \\
A\left(\frac{x}{y}\right)^{\prime \prime}=" M_{A} \cdot\binom{x}{y}
\end{gathered}
$$

Composition of Möbius maps is the same as multiplication of matrices.

Translating ϕ_{0}, ϕ_{1} to $[0,+\infty]$

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

Translating ϕ_{0}, ϕ_{1} to $[0,+\infty]$

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

Translating ϕ_{0}, ϕ_{1} to $[0,+\infty]$

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

$$
[0,1]=\phi_{0}([0,+\infty])
$$

$$
\begin{aligned}
& {\left[\frac{1}{3}, 1\right]=\phi_{0} \circ \phi_{1}([0,+\infty])} \\
& \frac{1}{\pi-1} "=" .010100010 \ldots
\end{aligned}
$$

Good digit sets have shrinking diameters.

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

$[0,+\infty]$ inherits a metric from $[0,1]$.
We use this metric to measure the "shrinking" of

Good digit sets have shrinking diameters.

$$
\begin{aligned}
\phi_{0}(x) & =\frac{x}{2} \\
\phi_{1}(x) & =\frac{x+1}{2}
\end{aligned}
$$

$[0,+\infty]$ inherits a metric from $[0,1]$.
We use this metric to measure the "shrinking" of
$\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{n}}([0,+\infty])$.

Good digit sets have shrinking diameters.

$\mathcal{B}(\Phi, n)$ measures the maximum diameter for n-length sequences.

$$
\begin{aligned}
\mathcal{B}(\Phi, 0) & =1 \\
\mathcal{B}(\Phi, 1) & =\frac{1}{2} \\
\mathcal{B}(\Phi, 2) & =\frac{1}{4}
\end{aligned}
$$

Good digit sets have shrinking diameters.

$\mathcal{B}(\Phi, n)$ measures the maximum diameter for n-length sequences.

$$
\begin{aligned}
\mathcal{B}(\Phi, 0) & =1 \\
\mathcal{B}(\Phi, 1) & =\frac{1}{2} \\
\mathcal{B}(\Phi, 2) & =\frac{1}{4}
\end{aligned}
$$

Good: $\lim _{j \rightarrow \infty} \mathcal{B}(\Phi, j)=0$

The rough idea behind the algorithm

When $A(x) \in \phi_{j}((0,+\infty))$ no matter what x is, output the digit ϕ_{j}.
Otherwise, absorb a digit from \times to refine our calculation. Define $A \sqsubseteq \phi_{j} \Leftrightarrow A([0,+\infty]) \subseteq \phi_{j}([0,+\infty])$.

The rough idea behind the algorithm

When $A(x) \in \phi_{j}((0,+\infty))$ no matter what x is, output the digit ϕ_{j}.
Otherwise, absorb a digit from x to refine our calculation.
Define $A \sqsubseteq \phi_{j} \Leftrightarrow A([0,+\infty]) \subseteq \phi_{j}([0,+\infty])$.

The rough idea behind the algorithm

When $A(x) \in \phi_{j}((0,+\infty))$ no matter what x is, output the digit ϕ_{j}.
Otherwise, absorb a digit from x to refine our calculation.
Define $A \sqsubseteq \phi_{j} \Leftrightarrow A([0,+\infty]) \subseteq \phi_{j}([0,+\infty])$.

The rough idea behind the algorithm

When $A(x) \in \phi_{j}((0,+\infty))$ no matter what x is, output the digit ϕ_{j}.
Otherwise, absorb a digit from x to refine our calculation.
Define $A \sqsubseteq \phi_{j} \Leftrightarrow A([0,+\infty]) \subseteq \phi_{j}([0,+\infty])$.

$$
H\left(A, \phi_{i_{1}} \phi_{i_{2}} \ldots\right):=\left\{\begin{array}{cl}
\phi_{0} H\left(\phi_{0}^{-1} \circ A, \phi_{i_{1}} \phi_{i_{2}} \ldots\right) & \text { if } A \sqsubseteq \phi_{0} \\
\phi_{1} H\left(\phi_{1}^{-1} \circ A, \phi_{i_{1}} \phi_{i_{2}} \ldots\right) & \text { else if } A \sqsubseteq \phi_{1} \\
\vdots & \\
\phi_{k} H\left(\phi_{k}^{-1} \circ A, \phi_{i_{1}} \phi_{i_{2}} \ldots\right) & \text { else if } A \sqsubseteq \phi_{k} \\
H\left(A \circ \phi_{i}, \phi_{i_{2}} \phi_{i_{3}} \ldots\right) & \text { otherwise. }
\end{array}\right.
$$

