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Möbius maps and digit sets
The Stern-Brocot representation

2 Admissibility
Admissible digit sets
The homographic algorithm

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Binary representation
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The standard binary representation of [0, 1].

0

1 Think of binary representations
in [0, 1], like

0.010100010 . . .

{0, 1}ω −→ [0, 1]

x1 x2 x3 . . . 7−→
∞∑
i=0

xi · 2−i
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The standard binary representation of [0, 1].

0

1 Think: receiving one bit at a
time.
Each bit restricts the set of
possibilities.

With 0 bits, x could be
anything in [0, 1].

When we see “0.0”, the
options are reduced.

“0.01” reduces them
further.
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The standard binary representation of [0, 1].

S01...
0

S01...
1

S01...
2

0

1

0

1
2

1
4

1
2

~x = x1 x2 x3 . . .

S~x
0 % S~x

1 % S~x
2 % S~x

3 % . . .

Some features:⋂
S~x

i is a singleton.

For each x , there is a
sequence ~x such that⋂

S~x
i = {x}.

Each sequence represents some
x and each x is represented.
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How to construct the sets S~x
i
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φ0(x) =
x

2

φ1(x) =
x + 1

2
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1, +∞, what’s the difference?

4

1

2

1
4

1
2

4
5

1
2

2
3

1
5

1
3

0

+∞

0

1 Work with [0,+∞] or [0, 1]?

The choice is arbitrary.

Squint and you can’t tell the difference.
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Möbius maps

Recall φ0(x) = x
2 , φ1(x) = x+1

2 .
Möbius map: a function

A(x) =
ax + b

cx + d

where a, b, c , d ∈ R.
We are interested in Möbius maps that are

strictly increasing,

refining (A : [0,+∞] → [0,+∞]).
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Digit sets

x

S~x
3

Möbius maps are our digits.
Let Φ = {φ0, . . . , φk} be a set of Möbius maps.
A sequence ~x = φi0 φi1 φi2 . . . represents x if

∞⋂
n=0

φi0 ◦ φi1 ◦ . . . ◦ φin([0,+∞])︸ ︷︷ ︸
S~x

n

= {x}.

Φ is a digit set if each x is represented.
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A sequence ~x = φi0 φi1 φi2 . . . represents x if

∞⋂
n=0

φi0 ◦ φi1 ◦ . . . ◦ φin([0,+∞])︸ ︷︷ ︸
S~x

n

= {x}.

Φ is a digit set if each x is represented.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Binary representation
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A sequence ~x = φi0 φi1 φi2 . . . represents x if

∞⋂
n=0

φi0 ◦ φi1 ◦ . . . ◦ φin([0,+∞])︸ ︷︷ ︸
S~x

n

= {x}.

Φ is a digit set if each x is represented.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Binary representation
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Good digit sets


φa

φb



φc

Φ is a good digit set if

1 Loosely:
⋂

S~x
i is always a singleton.

2 The sets φi ([0,+∞]) cover [0,+∞].

Theorem
Good digit sets are digit sets.

Good digit sets yield a total representation,
i.e. Φω → [0,+∞] is

total,

continuous,

surjective.
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The Stern-Brocot representation is a digit set
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How to make the tree:
If my parents are a

b and c
d , then I am a+c

b+d .
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The Stern-Brocot representation maps finite sequences of {L, R}
to rationals.
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The Stern-Brocot representation maps finite sequences of {L, R}
to rationals.
Easy to show: infinite sequences yield Cauchy sequences of
rationals.
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The Stern-Brocot representation maps finite sequences of {L, R}
to rationals.
Easy to show: infinite sequences yield Cauchy sequences of
rationals.
Careful with that metric!
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L . . . ∈ [0, 1]

LR . . . ∈ [
1

2
, 1]

LRR . . . ∈ [
2

3
, 1]

A nested sequence of sets S~x
i .

Each S~x
i is bounded by

the parents of x1 x2 . . . xi .
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φL(x) =
x

x + 1
φR(x) = x + 1

{φL, φR} is a good digit set.
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Outline

1 Digit sets
Binary representation
Möbius maps and digit sets
The Stern-Brocot representation

2 Admissibility
Admissible digit sets
The homographic algorithm

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility
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The homographic algorithm

Φ-Computability

Let Φ be a good digit set.
f : [0,+∞] → [0,+∞] is Φ-computable iff f has a continuous Φω

lifting.

Φω

����

f ]
//_____ Φω

����
[0,+∞]

f
// [0,+∞]

Good digit sets aren’t very good.
x 7→ 2x isn’t Stern-Brocot-computable.
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Admissible representations

p : Φω → [0,+∞] is an admissible representation if it is

continuous,

surjective,

maximal, i.e. for every continuous r :

Φω

p
����

Φω
r

//

∃
::v

v
v

v
v

[0,+∞]

Φω

p
����

//_____ Φω

p
����

[0,+∞]
f

// [0,+∞]

If Φω → [0,+∞] is admissible, any continuous f is Φ-computable.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible representations

p : Φω → [0,+∞] is an admissible representation if it is

continuous,

surjective,

maximal, i.e. for every continuous r :

Φω

p
����

Φω
r

//

∃
::v

v
v

v
v

[0,+∞]

Φω

p
����

//_____ Φω

p
����

[0,+∞]
f

// [0,+∞]

If Φω → [0,+∞] is admissible, any continuous f is Φ-computable.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible representations

p : Φω → [0,+∞] is an admissible representation if it is

continuous,

surjective,

maximal, i.e. for every continuous r :

Φω

p
����

Φω
r

//

∃
::v

v
v

v
v

[0,+∞]

Φω

p
����

//_____ Φω

p
����

[0,+∞]
f

// [0,+∞]

If Φω → [0,+∞] is admissible, any continuous f is Φ-computable.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible representations

p : Φω → [0,+∞] is an admissible representation if it is

continuous,

surjective,

maximal, i.e. for every continuous r :

Φω

p
����

Φω
r

//

∃
::v

v
v

v
v

[0,+∞]

Φω

p
����

//_____ Φω

p
����

[0,+∞]
f

// [0,+∞]

If Φω → [0,+∞] is admissible, any continuous f is Φ-computable.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible digit sets


φa

φb



φc

Not ADS!

Φ is an admissible digit set (ADS) if

1 Loosely:
⋂

S~x
i is always a singleton.

2 The sets φi ((0,+∞)) cover (0,+∞).

(2) replaces

The sets φi ([0,+∞]) cover [0,+∞].

for good digit sets.

Theorem
Admissible digit sets yield admissible
representations.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible digit sets


φa

φb



φc

Not ADS!

Φ is an admissible digit set (ADS) if

1 Loosely:
⋂

S~x
i is always a singleton.

2 The sets φi ((0,+∞)) cover (0,+∞).

(2) replaces

The sets φi ([0,+∞]) cover [0,+∞].

for good digit sets.

Theorem
Admissible digit sets yield admissible
representations.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible digit sets


φa

φb



φc

Not ADS!

Φ is an admissible digit set (ADS) if

1 Loosely:
⋂

S~x
i is always a singleton.

2 The sets φi ((0,+∞)) cover (0,+∞).

(2) replaces

The sets φi ([0,+∞]) cover [0,+∞].

for good digit sets.

Theorem
Admissible digit sets yield admissible
representations.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible digit sets


φa

φb



φc

Not ADS!

Φ is an admissible digit set (ADS) if

1 Loosely:
⋂

S~x
i is always a singleton.

2 The sets φi ((0,+∞)) cover (0,+∞).

(2) replaces

The sets φi ([0,+∞]) cover [0,+∞].

for good digit sets.

Theorem
Admissible digit sets yield admissible
representations.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Admissible digit sets


φa

φb



φc

Not ADS!

Φ is an admissible digit set (ADS) if

1 Loosely:
⋂

S~x
i is always a singleton.

2 The sets φi ((0,+∞)) cover (0,+∞).

(2) replaces

The sets φi ([0,+∞]) cover [0,+∞].

for good digit sets.

Theorem
Admissible digit sets yield admissible
representations.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

The Stern-Brocot representation is not ADS

φR


φL



S-B is a good digit set. . .
but not an admissible digit set.

φL([0,+∞]) = [0, 1]

φR([0,+∞]) = [1,+∞]

Solution: Add φM(x) = 2x+1
x+2 .
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Why this subsection doesn’t matter.

Let Φ be an ADS.
Aim: Construct an algorithm H(A,−) computing Möbius maps A.

But Φω → [0,+∞] is an admissible representation.

Any continuous f : [0,+∞] → [0,+∞] lifts to Φω.

Φω

p
����

//_____ Φω

p
����

[0,+∞]
f

// [0,+∞]

But formal verifications require explicit algorithms.
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But Φω → [0,+∞] is an admissible representation.

Any continuous f : [0,+∞] → [0,+∞] lifts to Φω.

Φω

p
����

//_____ Φω

p
����

[0,+∞]
f

// [0,+∞]

But formal verifications require explicit algorithms.

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Why this subsection does matter.

Let Φ be an ADS.
Aim: Construct an algorithm H(A,−) computing Möbius maps A.
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An algorithm for computing Möbius maps

Let M be the set of refining Möbius maps.

We explicitly defined H : M× Φω → Φω so that

Φω

p
����

H(A,−) //______ Φω

p
����

[0,+∞]
A

// [0,+∞]

H is the homographic algorithm.
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The very (very) rough idea behind the algorithm
(but with pictures)

H is the homographic algorithm.

A

L
R

R

M

Least fixed point
construction that

outputs a digit
when possible or

absorbs more input
when needed.
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H is the homographic algorithm.
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L M

Least fixed point
construction that

outputs a digit
when possible or

absorbs more input
when needed.
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Er, so what did we do?

Aim: investigate representations via Möbius maps

Found sufficient conditions for

total representations
total, admissible representations

modified Stern-Brocot to do formal arithmetic

explicitly computed homographic algorithm for ADS
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Found sufficient conditions for

total representations
total, admissible representations

modified Stern-Brocot to do formal arithmetic

explicitly computed homographic algorithm for ADS

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Er, so what did we do?

Aim: investigate representations via Möbius maps
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Found sufficient conditions for

total representations
total, admissible representations

modified Stern-Brocot to do formal arithmetic

explicitly computed homographic algorithm for ADS

Hughes, Niqui Admissible Digit Sets



Digit sets
Admissibility

Admissible digit sets
The homographic algorithm

Er, so what did we do?

Aim: investigate representations via Möbius maps
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Appendix Additional material

Möbius maps and matrices

A(x) =
ax + b

cx + d

Same thing: A matrix MA =

(
a b
c d

)
Let x , y ∈ [0,+∞). (

x
y

)
7→

{
x
y if y 6= 0,

+∞ else.

A(
x

y
)“ = ”MA ·

(
x
y

)
Composition of Möbius maps is the same as multiplication of
matrices.
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Appendix Additional material

Translating φ0, φ1 to [0, +∞]

0

1

0

1
2

1
4

1

φ0(x) =
x

2

φ1(x) =
x + 1

2
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0

+∞

0

1 1

1
3

φ0(x) =
x

2

φ1(x) =
x + 1

2
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Translating φ0, φ1 to [0, +∞]

0

+∞

0

1 1

1
3

φ0(x) =
x

2

φ1(x) =
x + 1

2

[0, 1] = φ0([0,+∞])

[
1

3
, 1] = φ0 ◦ φ1([0,+∞])

1

π − 1
“ = ”.010100010 . . .
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Appendix Additional material

Good digit sets have shrinking diameters.

0

+∞

0

1

+∞

1

1
3

3

0

+∞

φ0(x) =
x

2

φ1(x) =
x + 1

2

[0,+∞] inherits a metric
from [0, 1].
We use this metric to measure
the “shrinking” of
φi1φi2 . . . φin([0,+∞]).
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Good digit sets have shrinking diameters.

0

+∞

φ0



φ1



φ0 φ0


φ0 φ1


φ1 φ0


φ1 φ1



0

1

+∞

1

1
3

3

0

+∞ B(Φ, n) measures the maximum
diameter for n-length sequences.

B(Φ, 0) = 1

B(Φ, 1) =
1

2

B(Φ, 2) =
1

4
Good: lim

j→∞
B(Φ, j) = 0
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Appendix Additional material

The rough idea behind the algorithm

When A(x) ∈ φj((0,+∞)) no matter what x is,
output the digit φj .
Otherwise, absorb a digit from x to refine our calculation.
Define A v φj ⇔ A([0,+∞]) ⊆ φj([0,+∞]).

H(A, φi1φi2 . . .) :=



φ0 H(φ−1
0 ◦ A, φi1φi2 . . .) if A v φ0

φ1 H(φ−1
1 ◦ A, φi1φi2 . . .) else if A v φ1

...

φk H(φ−1
k ◦ A, φi1φi2 . . .) else if A v φk

H(A ◦ φi , φi2φi3 . . .) otherwise.
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