Admissible Digit Sets

Jesse Hughes^{1,2} Milad Niqui²

¹Technical University of Eindhoven

²Radboud University of Nijmegen

September 28, 2004

イロト イヨト イヨト イヨト

1 Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

Admissibility

- Admissible digit sets
- The homographic algorithm

<ロ> (四) (四) (三) (三) (三)

1 Digit sets

Binary representation

- Möbius maps and digit sets
- The Stern-Brocot representation

Admissibility

- Admissible digit sets
- The homographic algorithm

- ▲圖▶ | ▲圖▶ | ▲圖

1 Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

▲圖▶ ▲ 国▶ ▲ 国

Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

▲□▶ ▲ □▶ ▲ □

1 Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

1 Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

1 Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

<ロ> (日) (日) (日) (日) (日)

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think of binary representations in [0, 1], like

0.010100010...

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think of binary representations in [0, 1], like

0.010100010...

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think of binary representations in [0, 1], like

0.010100010...

$$\{0,1\}^{\omega} \longrightarrow [0,1]$$

 $x_1 x_2 x_3 \dots \longmapsto \sum_{i=0}^{\infty} x_i \cdot 2^{-i}$

(日) (日) (日) (日) (日)

문 권

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think: receiving one bit at a time.

Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in [0, 1].
- When we see "0.0", the options are reduced.
- "0.01" reduces them further.

(日) (日) (日) (日) (日)

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think: receiving one bit at a time.

Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in [0, 1].
- When we see "0.0", the options are reduced.
- "0.01" reduces them further.

(日) (日) (日) (日) (日)

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think: receiving one bit at a time.

Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in [0, 1].
- When we see "0.0", the options are reduced.

(日) (日) (日) (日) (日)

• "0.01" reduces them further.

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think: receiving one bit at a time.

Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in [0, 1].
- When we see "0.0", the options are reduced.

(日) (日) (日) (日) (日)

• "0.01" reduces them further.

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

Think: receiving one bit at a time.

Each bit restricts the set of possibilities.

- With 0 bits, x could be anything in [0, 1].
- When we see "0.0", the options are reduced.

(D) (A) (B) (B)

• "0.01" reduces them further.

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

 $\vec{x} = x_1 x_2 x_3 \dots$ $S_0^{\vec{x}} \supseteq S_1^{\vec{x}} \supseteq S_2^{\vec{x}} \supseteq S_3^{\vec{x}} \supseteq \dots$

Some features:

- $\bigcap S_i^{\vec{x}}$ is a singleton.
- For each x, there is a sequence x such that
 ∩ S_i^x = {x}.

Each sequence represents some x and each x is represented.

(日) (部) (注) (注)

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

 $\vec{x} = x_1 x_2 x_3 \dots$ $S_0^{\vec{x}} \supseteq S_1^{\vec{x}} \supseteq S_2^{\vec{x}} \supseteq S_3^{\vec{x}} \supseteq \dots$

Some features:

- $\bigcap S_i^{\vec{x}}$ is a singleton.
- For each x, there is a sequence x such that
 ∩ S_i^x = {x}.

Each sequence represents some x and each x is represented.

(日) (日) (日) (日) (日)

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

 $\vec{x} = x_1 x_2 x_3 \dots$ $S_0^{\vec{x}} \supseteq S_1^{\vec{x}} \supseteq S_2^{\vec{x}} \supseteq S_3^{\vec{x}} \supseteq \dots$

Some features:

- $\bigcap S_i^{\vec{x}}$ is a singleton.
- For each x, there is a sequence \vec{x} such that $\bigcap S_i^{\vec{x}} = \{x\}.$

Each sequence represents some x and each x is represented.

(日) (日) (日) (日) (日)

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The standard binary representation of [0, 1].

$$\vec{x} = x_1 \, x_2 \, x_3 \, \dots$$
$$S_0^{\vec{x}} \supseteq S_1^{\vec{x}} \supseteq S_2^{\vec{x}} \supseteq S_3^{\vec{x}} \supseteq \dots$$

Some features:

- $\bigcap S_i^{\vec{x}}$ is a singleton.
- For each x, there is a sequence x such that ∩ S_i^x = {x}.

Each sequence represents some x and each x is represented.

< □ > < □ > < □ > < □ > < □

Binary representation Möbius maps and digit sets The Stern-Brocot representation

How to construct the sets $S_i^{\vec{X}}$

 $\phi_0(x) = \frac{x}{2}$ $\phi_1(x) = \frac{x+1}{2}$

イロト イヨト イヨト イヨト

Binary representation Möbius maps and digit sets The Stern-Brocot representation

How to construct the sets $S_i^{\vec{x}}$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

イロト イヨト イヨト イヨト

Binary representation Möbius maps and digit sets The Stern-Brocot representation

How to construct the sets $S_i^{\vec{x}}$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

$$S_0^{01...} = [0, 1]$$

$$S_1^{01...} = \phi_0([0, 1])$$

$$S_2^{01...} = \phi_0 \circ \phi_1([0, 1])$$

$$S_i^{\vec{x}} = \phi_{x_0} \circ \ldots \circ \phi_{x_i}([0, 1])$$

$$\bigcap_{i \in \mathbb{N}} S_i^{\vec{x}} = \{0.x_0 x_1 \dots\}$$

イロト イヨト イヨト イヨト

Binary representation Möbius maps and digit sets The Stern-Brocot representation

How to construct the sets $S_i^{\vec{x}}$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

$$S_0^{01...} = [0, 1]$$

$$S_1^{01...} = \phi_0([0, 1])$$

$$S_2^{01...} = \phi_0 \circ \phi_1([0, 1])$$

$$S_i^{\vec{x}} = \phi_{x_0} \circ \ldots \circ \phi_{x_i}([0, 1])$$

$$\bigcap_{i \in \mathbb{N}} S_i^{\vec{x}} = \{0.x_0 x_1 \dots\}$$

イロト イヨト イヨト イヨト

Binary representation Möbius maps and digit sets The Stern-Brocot representation

How to construct the sets $S_i^{\vec{x}}$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

$$S_0^{01...} = [0, 1]$$

$$S_1^{01...} = \phi_0([0, 1])$$

$$S_2^{01...} = \phi_0 \circ \phi_1([0, 1])$$

$$S_i^{\vec{x}} = \phi_{x_0} \circ \ldots \circ \phi_{x_i}([0, 1])$$

$$\bigcap_{i \in \mathbb{N}} S_i^{\vec{x}} = \{0.x_0 x_1 \dots\}$$

イロト イヨト イヨト イヨト

1, $+\infty,$ what's the difference?

Work with $[0,+\infty]$ or [0,1]?

The choice is arbitrary.

Squint and you can't tell the difference.

<ロ> (日) (日) (日) (日) (日)

1, $+\infty$, what's the difference?

Work with $[0, +\infty]$ or [0, 1]? The choice is arbitrary.

Squint and you can't tell the difference.

A (1) < A (1) </p>

1, $+\infty$, what's the difference?

Work with $[0, +\infty]$ or [0, 1]? The choice is arbitrary.

Squint and you can't tell the difference.

< 17 ▶

Recall
$$\phi_0(x) = \frac{x}{2}$$
, $\phi_1(x) = \frac{x+1}{2}$.

Möbius map: a function

$$A(x) = \frac{ax+b}{cx+d}$$

where $a, b, c, d \in \mathbb{R}$.

We are interested in Möbius maps that are

- strictly increasing,
- refining $(A: [0, +\infty] \rightarrow [0, +\infty])$.

Recall
$$\phi_0(x) = \frac{x}{2}$$
, $\phi_1(x) = \frac{x+1}{2}$.
Möbius map: a function

$$A(x) = \frac{ax+b}{cx+d}$$

where $a, b, c, d \in \mathbb{R}$.

We are interested in Möbius maps that are

- strictly increasing,
- refining $(A : [0, +\infty] \rightarrow [0, +\infty])$.

<ロ> (四) (四) (注) (注) ()

문 문

Recall
$$\phi_0(x) = \frac{x}{2}$$
, $\phi_1(x) = \frac{x+1}{2}$.
Möbius map: a function

$$A(x) = \frac{ax+b}{cx+d}$$

where $a, b, c, d \in \mathbb{R}$.

We are interested in Möbius maps that are

- strictly increasing,
- refining $(A: [0, +\infty] \rightarrow [0, +\infty])$.

<ロ> (四) (四) (注) (注) ()

Recall
$$\phi_0(x) = \frac{x}{2}$$
, $\phi_1(x) = \frac{x+1}{2}$.
Möbius map: a function

$$A(x) = \frac{ax+b}{cx+d}$$

where $a, b, c, d \in \mathbb{R}$.

We are interested in Möbius maps that are

- strictly increasing,
- refining $(A: [0, +\infty] \rightarrow [0, +\infty])$.

イロト イヨト イヨト イヨト

Digit sets

Möbius maps are our digits.

Let $\Phi = \{\phi_0, \dots, \phi_k\}$ be a set of Möbius maps. A sequence $\vec{x} = \phi_{i_0} \phi_{i_1} \phi_{i_2} \dots$ represents x if

$$\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_0} \circ \phi_{i_1} \circ \ldots \circ \phi_{i_n}([0, +\infty])}_{S_n^{\mathcal{X}}} = \{x\}.$$

비로 (로) (로) (로) (미)

Φ is a *digit set* if each x is represented.

Digit sets

Möbius maps are our *digits*. Let $\Phi = \{\phi_0, \dots, \phi_k\}$ be a set of Möbius maps. A sequence $\vec{x} = \phi_{i_0} \phi_{i_1} \phi_{i_2} \dots$ represents x if

$$\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_0} \circ \phi_{i_1} \circ \ldots \circ \phi_{i_n}([0,+\infty])}_{S_n^{\varphi}} = \{x\}.$$

비로 (로) (로) (로) (미)

Φ is a *digit set* if each x is represented.

Digit sets

Möbius maps are our *digits*. Let $\Phi = \{\phi_0, \dots, \phi_k\}$ be a set of Möbius maps. A sequence $\vec{x} = \phi_{i_0} \phi_{i_1} \phi_{i_2} \dots$ represents x if

$$\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_0} \circ \phi_{i_1} \circ \ldots \circ \phi_{i_n}([0,+\infty])}_{S_{\vec{x}}^{\vec{x}}} = \{x\}.$$

(日) (日) (日) (日) (日)

 Φ is a *digit set* if each x is represented.
Digit sets

Möbius maps are our *digits*. Let $\Phi = \{\phi_0, \dots, \phi_k\}$ be a set of Möbius maps. A sequence $\vec{x} = \phi_{i_0} \phi_{i_1} \phi_{i_2} \dots$ represents x if

$$\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_0} \circ \phi_{i_1} \circ \ldots \circ \phi_{i_n}([0,+\infty])}_{S_{\vec{n}}^{\vec{x}}} = \{x\}.$$

(日) (日) (日) (日) (日)

 Φ is a *digit set* if each x is represented.

Digit sets

Möbius maps are our *digits*. Let $\Phi = \{\phi_0, \dots, \phi_k\}$ be a set of Möbius maps. A sequence $\vec{x} = \phi_{i_0} \phi_{i_1} \phi_{i_2} \dots$ represents x if

$$\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_0} \circ \phi_{i_1} \circ \ldots \circ \phi_{i_n}([0,+\infty])}_{S_{\vec{n}}^{\vec{x}}} = \{x\}.$$

(日) (日) (日) (日) (日)

 Φ is a *digit set* if each x is represented.

Digit sets

Möbius maps are our *digits*. Let $\Phi = \{\phi_0, \dots, \phi_k\}$ be a set of Möbius maps. A sequence $\vec{x} = \phi_{i_0} \phi_{i_1} \phi_{i_2} \dots$ represents x if

$$\bigcap_{n=0}^{\infty} \underbrace{\phi_{i_0} \circ \phi_{i_1} \circ \ldots \circ \phi_{i_n}([0,+\infty])}_{S_n^{\overrightarrow{x}}} = \{x\}.$$

(日) (日) (日) (日) (日)

 Φ is a *digit set* if each x is represented.

Φ is a *good digit set* if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$.

Theorem

Good digit sets are digit sets.

Good digit sets yield a *total representation*, i.e. $\Phi^{\omega} \rightarrow [0, +\infty]$ is

イロト イポト イヨト イヨト

total

•

Φ is a good digit set if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$.

Theorem

Good digit sets are digit sets.

Good digit sets yield a *total representation*, i.e. $\Phi^{\omega} \rightarrow [0, +\infty]$ is

<ロ> (日) (日) (日) (日) (日)

- total,
- continuous;
- surjective.

Φ is a good digit set if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$.

Theorem

Good digit sets are digit sets.

Good digit sets yield a total representation, i.e. $\Phi^\omega \to [0,+\infty]$ is

<ロ> (日) (日) (日) (日) (日)

- total,
- continuous,
- surjective.

 Φ is a good digit set if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$.

Theorem

Good digit sets are digit sets.

Good digit sets yield a total representation, i.e. $\Phi^\omega \to [0,+\infty]$ is

- total,
- continuous,
- surjective.

 Φ is a good digit set if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$.

Theorem

Good digit sets are digit sets.

Good digit sets yield a total representation, i.e. $\Phi^\omega \to [0,+\infty]$ is

- total,
- continuous,
- surjective.

 Φ is a good digit set if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$.

Theorem

Good digit sets are digit sets.

Good digit sets yield a total representation, i.e. $\Phi^\omega \to [0,+\infty]$ is

・ロト ・同ト ・ヨト ・ヨ

- total,
- continuous,
- surjective.

How to make the tree: If my parents are $\frac{a}{b}$ and $\frac{c}{d}$, then I am $\frac{a+c}{b+d}$.

The Stern-Brocot representation is a digit set

to rationals.

The Stern-Brocot representation maps finite sequences of $\{L, R\}$ to rationals.

Easy to show: infinite sequences yield Cauchy sequences of rationals.

The Stern-Brocot representation maps finite sequences of $\{L, R\}$ to rationals.

Easy to show: infinite sequences yield Cauchy sequences of rationals.

Careful with that metric!

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The Stern-Brocot representation is a digit set

$$L \dots \in [0, 1]$$

 $LR \dots \in [\frac{1}{2}, 1]$
 $LRR \dots \in [\frac{2}{3}, 1]$

A nested sequence of sets $S_i^{\overline{X}}$.

▲ 御 ▶ → ● 目

Each $S_i^{\vec{x}}$ is bounded by the parents of $x_1 x_2 \dots x_n$

Binary representation Möbius maps and digit sets The Stern-Brocot representation

The Stern-Brocot representation is a digit set

$$L \dots \in [0, 1]$$

 $LR \dots \in [\frac{1}{2}, 1]$
 $LRR \dots \in [\frac{2}{3}, 1]$

A nested sequence of sets $S_i^{\vec{x}}$.

Each $S_i^{\vec{x}}$ is bounded by the parents of $x_1 x_2 \ldots x_i$

< 🗇 ▶

The Stern-Brocot representation is a digit set

$$L \dots \in [0, 1]$$

 $LR \dots \in [\frac{1}{2}, 1]$
 $LRR \dots \in [\frac{2}{3}, 1]$

A nested sequence of sets $S_i^{\vec{x}}$.

Each $S_i^{\vec{x}}$ is bounded by the parents of $x_1 x_2 \dots x_i$.

The Stern-Brocot representation is a digit set

 $\{\phi_L, \phi_R\}$ is a good digit set.

Admissible digit sets The homographic algorithm

Outline

Digit sets

- Binary representation
- Möbius maps and digit sets
- The Stern-Brocot representation

2 Admissibility

- Admissible digit sets
- The homographic algorithm

▲□▶ ▲ 国 ▶ ▲ 国

Φ-Computability

Let Φ be a good digit set.

 $f:[0,+\infty] \to [0,+\infty]$ is Φ -computable iff f has a continuous Φ^{ω} lifting.

$$\begin{array}{c} \Phi^{\omega} - - \frac{f^{\sharp}}{-} \to \Phi^{\omega} \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ [0, +\infty] \xrightarrow{f} \to [0, +\infty] \end{array}$$

Good digit sets aren't very good. $x \mapsto 2x$ isn't Stern-Brocot-computable.

(日) (日) (日) (日) (日)

Φ-Computability

Let Φ be a good digit set. $f : [0, +\infty] \to [0, +\infty]$ is Φ -computable iff f has a continuous Φ^{ω} lifting.

Good digit sets aren't *very* good. $x \mapsto 2x$ isn't Stern-Brocot-computable

문 권

Φ-Computability

Let Φ be a good digit set. $f: [0, +\infty] \to [0, +\infty]$ is Φ -computable iff f has a continuous Φ^{ω} lifting.

Good digit sets aren't *very* good. $x \mapsto 2x$ isn't Stern-Brocot-computable.

문 논

$p: \Phi^\omega \to [0,+\infty]$ is an admissible representation if it is

- continuous,
- surjective,
- maximal, i.e. for every continuous *r*:

If $\Phi^{\omega} \rightarrow [0, +\infty]$ is admissible, any continuous f is Φ -computable.

イロト イポト イヨト イヨト

- $p: \Phi^\omega \to [0,+\infty]$ is an admissible representation if it is
 - continuous,
 - surjective,
 - maximal, i.e. for every continuous *r*:

If $\Phi^{\omega} \rightarrow [0, +\infty]$ is admissible, any continuous f is Φ -computable.

(日) (部) (注) (注)

- $p: \Phi^\omega \to [0,+\infty]$ is an admissible representation if it is
 - continuous,
 - surjective,
 - maximal, i.e. for every continuous r:

If $\Phi^{\omega} \rightarrow [0, +\infty]$ is admissible, any continuous f is Φ -computable.

- $p: \Phi^\omega \to [0,+\infty]$ is an admissible representation if it is
 - continuous,
 - surjective,
 - maximal, i.e. for every continuous r:

If $\Phi^\omega o [0, +\infty]$ is admissible, any continuous f is Φ -computable.

(日) (部) (종) (종) (종) (종)

Φ is an admissible digit set (ADS) if
Loosely: ∩ S_i^x is always a singleton.
The sets φ_i((0, +∞)) cover (0, +∞).
(2) replaces

The sets φ_i([0, +∞]) cover [0, +∞].
 for good digit sets.

Theorem Admissible digit sets yield admissible representations.

Vot ADS!

Φ is an admissible digit set (ADS) if
Loosely: ∩ S_i^x is always a singleton.
The sets φ_i((0, +∞)) cover (0, +∞).
(2) replaces
The sets φ_i([0, +∞]) cover [0, +∞] for good digit sets.

Theorem Admissible digit sets yield admissible representations.

Not ADS!

<ロ> (日) (日) (日) (日) (日)

- Φ is an *admissible digit set* (ADS) if
 - **1** Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
 - 2 The sets $\phi_i((0, +\infty))$ cover $(0, +\infty)$.

(2) replaces

• The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$. for good digit sets.

<ロ> (日) (日) (日) (日) (日)

Theorem

Admissible digit sets yield admissible representations.

 Φ is an *admissible digit set* (ADS) if

- Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
- 2 The sets $\phi_i((0, +\infty))$ cover $(0, +\infty)$.

(2) replaces

• The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$. for good digit sets.

<ロ> (日) (日) (日) (日) (日)

Theorem

Admissible digit sets yield admissible representations.

- Φ is an *admissible digit set* (ADS) if
 - Loosely: $\bigcap S_i^{\vec{x}}$ is always a singleton.
 - 2 The sets $\phi_i((0, +\infty))$ cover $(0, +\infty)$.

(2) replaces

• The sets $\phi_i([0, +\infty])$ cover $[0, +\infty]$. for good digit sets.

(D) (A) (B) (B)

Theorem Admissible digit sets yield admissible representations.

The Stern-Brocot representation is not ADS

S-B is a good digit set... but not an admissible digit set

> $\phi_L([0, +\infty]) = [0, 1]$ $\phi_R([0, +\infty]) = [1, +\infty]$

> > (日) (日) (日) (日) (日)

Solution: Add $\phi_M(x) = \frac{2x+1}{x+2}$.

The Stern-Brocot representation is not ADS

S-B is a good digit set... but not an admissible digit set.

> $\phi_L((0, +\infty)) = (0, 1)$ $\phi_R((0, +\infty)) = (1, +\infty)$

> > (日) (日) (日) (日) (日)

Solution: Add $\phi_M(x) = \frac{2x+1}{x+2}$.

The Stern-Brocot representation is not ADS

S-B is a good digit set... but not an admissible digit set.

> $\phi_L((0, +\infty)) = (0, 1)$ $\phi_R((0, +\infty)) = (1, +\infty)$

> > ・日・ ・ヨ・ ・ヨ・

Solution: Add $\phi_M(x) = \frac{2x+1}{x+2}$.

Why this subsection doesn't matter.

Let Φ be an ADS. Aim: Construct an algorithm H(A, -) computing Möbius maps A. But $\Phi^{\omega} \to [0, +\infty]$ is an admissible representation. Any continuous $f : [0, +\infty] \to [0, +\infty]$ lifts to Φ^{ω} .

But formal verifications require explicit algorithms.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Why this subsection doesn't matter.

Let Φ be an ADS. Aim: Construct an algorithm H(A, -) computing Möbius maps A. But $\Phi^{\omega} \rightarrow [0, +\infty]$ is an admissible representation.

Any continuous $f : [0, +\infty] \to [0, +\infty]$ lifts to Φ^{ω} .

But formal verifications require explicit algorithms.

비로 (로) (로) (로) (토)

Why this subsection doesn't matter.

Let Φ be an ADS.

Aim: Construct an algorithm H(A, -) computing Möbius maps A.

But $\Phi^{\omega} \rightarrow [0, +\infty]$ is an admissible representation.

Any continuous $f: [0, +\infty] \rightarrow [0, +\infty]$ lifts to Φ^{ω} .

But formal verifications require explicit algorithms.

イロト イポト イヨト イヨト
Why this subsection does matter.

Let Φ be an ADS.

Aim: Construct an algorithm H(A, -) computing Möbius maps A.

But $\Phi^{\omega} \rightarrow [0, +\infty]$ is an admissible representation.

Any continuous $f:[0,+\infty] \to [0,+\infty]$ lifts to Φ^{ω} .

$$\begin{array}{ccc}
\Phi^{\omega} - - - \rightarrow \Phi^{\omega} \\
\downarrow^{p} & \downarrow^{p} \\
\left[0, +\infty\right] \xrightarrow{f} \left[0, +\infty\right]
\end{array}$$

But formal verifications require explicit algorithms.

비교 (종) (종) (종) (종)

An algorithm for computing Möbius maps

Let \mathbb{M} be the set of refining Möbius maps.

We explicitly defined $H: \mathbb{M} \times \Phi^{\omega} \to \Phi^{\omega}$ so that

H is the homographic algorithm.

(日) (部) (注) (注)

An algorithm for computing Möbius maps

Let \mathbb{M} be the set of refining Möbius maps. We explicitly defined $H : \mathbb{M} \times \Phi^{\omega} \to \Phi^{\omega}$ so that

H is the homographic algorithm.

・ロト ・回ト ・ヨト ・ヨト

An algorithm for computing Möbius maps

Let \mathbb{M} be the set of refining Möbius maps. We explicitly defined $H : \mathbb{M} \times \Phi^{\omega} \to \Phi^{\omega}$ so that

$$\begin{array}{c|c} \Phi^{\omega} - -\overset{H(A,-)}{-} > \Phi^{\omega} \\ \downarrow^{p} & \downarrow^{p} \\ 0, +\infty \end{array} \xrightarrow{[0, +\infty]} A > [0, +\infty] \end{array}$$

H is the homographic algorithm.

< ロト (周) (日) (日)

Digit sets Admissibile digit sets The homographic algorithm

The very (very) rough idea behind the algorithm (but with pictures)

H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or
- absorbs more input when needed.

The very (very) rough idea behind the algorithm (but with pictures)

H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or
- absorbs more input when needed.

The very (very) rough idea behind the algorithm (but with pictures)

H is the homographic algorithm.

Least fixed point construction that

- outputs a digit when possible or
- absorbs more input when needed.

- ・ 同 ・ ・ き ・ ・ ・ き

The very (very) rough idea behind the algorithm (but with pictures)

H is the homographic algorithm.

Least fixed point construction that

 outputs a digit when possible or

・ 同 ト・ ・ ヨート・ ・ ヨ

• absorbs more input when needed.

The very (very) rough idea behind the algorithm (but with pictures)

H is the homographic algorithm.

Least fixed point construction that

 outputs a digit when possible or

・ 同 ト・ ・ ヨート・ ・ ヨ

• absorbs more input when needed.

Er, so what did we do?

• Aim: investigate representations via Möbius maps

- Found sufficient conditions for
 - total representations
 - total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

イロト イヨト イヨト イヨト

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
 - total representations
 - total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

(日) (部) (注) (注)

Admissible digit sets The homographic algorithm

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
 - total representations
 - total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

(日) (日) (日) (日) (日)

The homographic algorithm

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
 - total representations
 - total, admissible representations
- modified Stern-Brocot to do formal arithmetic.

< ロト (周) (日) (日)

The homographic algorithm

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
 - total representations
 - total, admissible representations
- modified Stern-Brocot to do formal arithmetic.
- explicitly computed homographic algorithm for ADS

< ロト (周) (日) (日)

Er, so what did we do?

- Aim: investigate representations via Möbius maps
- Found sufficient conditions for
 - total representations
 - total, admissible representations
- modified Stern-Brocot to do formal arithmetic
- explicitly computed homographic algorithm for ADS

Outline

• Additional material

<ロ> (四) (四) (三) (三) (三)

三日 のへの

$$A(x) = \frac{ax + b}{cx + d}$$

Same thing: A matrix $M_A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
Let $x, y \in [0, +\infty)$.

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ +\infty & \text{else.} \end{cases}$$

$$A(\frac{x}{y})^{"} = "M_{\mathcal{A}} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Composition of Möbius maps is the same as multiplication of matrices.

E 990

$$A(x) = \frac{ax+b}{cx+d}$$

Same thing: A matrix $M_A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
Let $x, y \in [0, +\infty)$.

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ +\infty & \text{else.} \end{cases}$$

$$A(\frac{x}{y})^{"} = "M_{\mathcal{A}} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Composition of Möbius maps is the same as multiplication of matrices.

E 990

$$A(x)=rac{ax+b}{cx+d}$$

Same thing: A matrix $M_A=egin{pmatrix}a&b\\c&d\end{pmatrix}$
Let $x,y\in [0,+\infty).$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ +\infty & \text{else.} \end{cases}$$

$$A(\frac{x}{y})^{"} = "M_A \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Composition of Möbius maps is the same as multiplication of matrices. বিচাৰ আজি বিজ্ঞান হয় আজি বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ্ঞান বিজ

$$A(x)=rac{ax+b}{cx+d}$$

Same thing: A matrix $M_A=egin{pmatrix}a&b\\c&d\end{pmatrix}$ Let $x,y\in [0,+\infty).$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{x}{y} & \text{if } y \neq 0, \\ +\infty & \text{else.} \end{cases}$$

$$A(\frac{x}{y}) = "M_A \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Composition of Möbius maps is the same as multiplication of matrices.

E 990

Translating ϕ_0 , ϕ_1 to $[0, +\infty]$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

イロト イヨト イヨト イヨト

포네크

Translating ϕ_0 , ϕ_1 to $[0, +\infty]$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

<ロ> (日) (日) (日) (日) (日)

포네크

Translating ϕ_0 , ϕ_1 to $[0, +\infty]$

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

$$[0,1] = \phi_0([0,+\infty])$$
$$[\frac{1}{3},1] = \phi_0 \circ \phi_1([0,+\infty])$$
$$\frac{1}{\pi-1} = ".010100010...$$

- (日) (三) (三)

포네크

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

$[0, +\infty]$ inherits a metric from [0, 1].

We use this metric to measure the "shrinking" of $\phi_{i_1}\phi_{i_2} \ldots \phi_{i_n}([0, +\infty]).$

< □ > < □ > < □ >

$$\phi_0(x) = \frac{x}{2}$$
$$\phi_1(x) = \frac{x+1}{2}$$

 $[0, +\infty]$ inherits a metric from [0, 1]. We use this metric to measure the "shrinking" of $\phi_{i_1}\phi_{i_2} \dots \phi_{i_n}([0, +\infty])$.

- 17 ▶

4 B K 4 B

 $\mathcal{B}(\Phi, n)$ measures the maximum diameter for *n*-length sequences.

 $\mathcal{B}(\Phi, 0) = 1$ $\mathcal{B}(\Phi, 1) = rac{1}{2}$ $\mathcal{B}(\Phi, 2) = rac{1}{4}$ od: $\lim_{i \to \infty} \mathcal{B}(\Phi, j) = 0$

< 177 ▶

A 3 b

 $\mathcal{B}(\Phi, n)$ measures the maximum diameter for *n*-length sequences.

 $\mathcal{B}(\Phi, 0) = 1$ $\mathcal{B}(\Phi, 1) = \frac{1}{2}$ $\mathcal{B}(\Phi, 2) = \frac{1}{4}$ Good: $\lim_{i \to \infty} \mathcal{B}(\Phi, j) = 0$

When $A(x) \in \phi_j((0, +\infty))$ no matter what x is, output the digit ϕ_j .

Otherwise, absorb a digit from x to refine our calculation. Define $A \sqsubseteq \phi_j \Leftrightarrow A([0, +\infty]) \subseteq \phi_j([0, +\infty])$.

 $\begin{cases} \phi_0 \ H(\phi_0^{-1} \circ A, \phi_{i_1} \phi_{i_2} \dots) & \text{if } A \sqsubseteq \phi_0 \\ \phi_1 \ H(\phi_1^{-1} \circ A, \phi_{i_1} \phi_{i_2} \dots) & \text{else if } A \sqsubseteq \phi_1 \\ \vdots \\ \phi_k \ H(\phi_k^{-1} \circ A, \phi_{i_1} \phi_{i_2} \dots) & \text{else if } A \sqsubseteq \phi_k \\ H(A \circ \phi_i, \phi_{i_2} \phi_{i_3} \dots) & \text{otherwise.} \end{cases}$

・ 同・ ・ ヨ・ ・ ヨ・

When $A(x) \in \phi_j((0, +\infty))$ no matter what x is, output the digit ϕ_j . Otherwise, absorb a digit from x to refine our calculation. Define $A \sqsubseteq \phi_j \Leftrightarrow A([0, +\infty]) \subseteq \phi_j([0, +\infty])$.

$$A, \phi_{i_1}\phi_{i_2}\dots) := \begin{cases} \phi_0 \ H(\phi_0^{-1} \circ A, \phi_{i_1}\phi_{i_2}\dots) & \text{if } A \sqsubseteq \phi_0 \\ \phi_1 \ H(\phi_1^{-1} \circ A, \phi_{i_1}\phi_{i_2}\dots) & \text{else if } A \sqsubseteq \phi_1 \\ \vdots \\ \phi_k \ H(\phi_k^{-1} \circ A, \phi_{i_1}\phi_{i_2}\dots) & \text{else if } A \sqsubseteq \phi_k \\ H(A \circ \phi_i, \phi_{i_2}\phi_{i_3}\dots) & \text{otherwise.} \end{cases}$$

▲圖▶ ▲理▶ ▲理▶

문 돈

When $A(x) \in \phi_j((0, +\infty))$ no matter what x is, output the digit ϕ_j . Otherwise, absorb a digit from x to refine our calculation. Define $A \sqsubseteq \phi_j \Leftrightarrow A([0, +\infty]) \subseteq \phi_j([0, +\infty])$.

$$H(A,\phi_{i_1}\phi_{i_2}\ldots) := \begin{cases} \phi_0 \ H(\phi_0^{-1} \circ A, \phi_{i_1}\phi_{i_2}\ldots) & \text{if } A \sqsubseteq \phi_0 \\ \phi_1 \ H(\phi_1^{-1} \circ A, \phi_{i_1}\phi_{i_2}\ldots) & \text{else if } A \sqsubseteq \phi_1 \\ \vdots \\ \phi_k \ H(\phi_k^{-1} \circ A, \phi_{i_1}\phi_{i_2}\ldots) & \text{else if } A \sqsubseteq \phi_k \\ H(A \circ \phi_i, \phi_{i_2}\phi_{i_3}\ldots) & \text{otherwise.} \end{cases}$$

▲圖▶ ▲ 문▶ ▲ 문▶ 문 문 ● ○ ○ ○

When $A(x) \in \phi_j((0, +\infty))$ no matter what x is, output the digit ϕ_j . Otherwise, absorb a digit from x to refine our calculation. Define $A \sqsubseteq \phi_j \Leftrightarrow A([0, +\infty]) \subseteq \phi_j([0, +\infty])$.

$$H(A,\phi_{i_1}\phi_{i_2}\ldots) := \begin{cases} \phi_0 \ H(\phi_0^{-1} \circ A,\phi_{i_1}\phi_{i_2}\ldots) & \text{if } A \sqsubseteq \phi_0 \\ \phi_1 \ H(\phi_1^{-1} \circ A,\phi_{i_1}\phi_{i_2}\ldots) & \text{else if } A \sqsubseteq \phi_1 \\ \vdots \\ \phi_k \ H(\phi_k^{-1} \circ A,\phi_{i_1}\phi_{i_2}\ldots) & \text{else if } A \sqsubseteq \phi_k \\ H(A \circ \phi_i,\phi_{i_2}\phi_{i_3}\ldots) & \text{otherwise.} \end{cases}$$

▲圖▶ ▲ 문▶ ▲ 문▶ 문 문 ● ○ ○ ○